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Abstract. Microstructurally small fatigue crack formation includes stages of incubation, 
nucleation, and microstructurally small propagation. In AA 7075-T651, the fracture of Al7Cu2Fe 
constituent particles is the major incubation source..  In experiments, it has been observed that 
only a small percentage of these Fe-bearing particles crack in a highly stressed volume. The work 
presented here addresses the identification of the particles prone to cracking and the prediction of 
particle cracking frequency, given a distribution of particles and crystallographic texture in such a 
volume. Three-dimensional elasto-viscoplastic finite element analyses are performed to develop a 
response surface for the tensile stress in the particle as a function of the strain level surrounding 
the particle, parent grain orientation, and particle aspect ratio. A technique for estimating particle 
strength from fracture toughness, particle size, and intrinsic flaw size is developed. Particle 
cracking is then determined by comparing particle stress and strength. The frequency of particle 
cracking is then predicted from sampling measured distributions of grain orientation, particle 
aspect ratio, and size. Good agreement is found between the predicted frequency of particle 
cracking and two preliminary validation experiments.  An estimate of particle cracking frequency 
is important for simulating the next stages of microstructurally small fatigue crack formation: 
inserting all particles into a microstructural model for these stages is computationally intractable 
and physically unnecessary.   

 
1. Introduction 
The structural integrity of complex mechanical systems such as bridges, turbine engines and aircraft is a 
prime concern of engineering practice.  Generous safety factors are often built into such systems in order 
to avoid catastrophic failure during use.  In opposition, economic pressures, performance criteria, 
resource limitations and the desire for simplicity encourage efficient and elegant design.  This issue is of 
particular importance when fatigue damage is a primary limitation of structural integrity and maximum 
utilization.  Recent efforts to reduce the costs associated with overly conservative approaches to the 
avoidance of fatigue failure have emphasized the possibility of using specific knowledge of the fatigue 
process in conjunction with novel sensors and sophisticated reasoning techniques to create highly 
detailed, predictive models of fatigue damage (Christodoulou, 2004).  This approach seeks to exploit 
thorough knowledge of the microstructural origins of fatigue failure combined with the power of modern 
computing to create high-fidelity physically-based models of the fatigue degradation process that can be 
used for probabilistic predictions of structural failure.  As part of one such effort (Papazian, 2007a, 
2007b), the microstructural origins of fatigue failure in commercial aluminum alloys are being codified 
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into multi-scale, highly-detailed finite element models that are capable of analyzing the fatigue process in 
large complex systems while taking into account the specifics of the material microstructure.  This paper 
addresses the first step in such a modeling capability, that of the incubation of cracks in aluminum alloy 
7075-T651. 
 
It is well known that, in the high-cycle regime, most of an aluminum alloy’s fatigue life is spent in the 
microstructurally small fatigue crack (MSFC) formation phase. This phase consists of the crack 
incubation, nucleation, and microstructurally small propagation stages. Suresh (1998) asserted that up to 
90% of the total fatigue life of a structural component could be consumed during the formation of a 
dominant fatigue crack. Other researchers have argued that the time spent before a crack becomes 
microstructurally large could be 50-70% of total fatigue life (Brockenbrough et al. 1994, Fan et al. 2001). 
McDowell et al. (2003) distinguished the distinct stages of MSFC formation and implemented a 
corresponding series of phenomenological models to predict the fatigue life in A356-T6. A complete 
understanding of the physical response and associated statistics, in each stage and proper sequence, of the 
microstructure during MSFC formation is still needed. One way to obtain additional insight is to couple 
improved experimental techniques with ever increasing computing power such that individual 
microcracks can be modeled directly, an explicitly geometrical approach. This strategy will provide an 
environment to explore the underlying physics and mechanics of the MSFC phase. The opportunity now 
exists to create and validate an improved prognosis capability, which accurately captures the stochastic 
behavior of this dominant fatigue life phase.  
 
This is the first in a series of papers addressing such a capability, with aluminum alloy 7075-T651 as the 
proof-test material.  Throughout this series, wherever possible, statistically accurate morphologies and 
textures are explicitly included in all three-dimensional FE models. The goal of this paper is to develop a 
microstructure-based model wherein the observed statistics related to incubation are accurately predicted.   
These incubation statistics are necessary inputs for statistically accurate simulations of the later stages of 
MSFC formation.  Future papers will address these subsequent stages, nucleation and microstructurally 
small crack propagation, and provide validation of the implemented criteria and predicted statistics.  
 
In general, incubation is the stage of MSFC formation that precedes and enables the development of new 
surface area in the alloy, and varies with alloy composition. In 7075-T651, a major element of the 
incubation process is the brittle cracking of Al7Cu2Fe constituent particles. This is a common observation 
in commercial aluminum alloys, which often contain such brittle intermetallic impurities (e.g. Morris 
1976, Morris 1978, Kung 1979).  Using optical and SEM microscopy to observe the notch root of a single 
edge-notch tension (SEN(T)) specimen, Gruenberg et al. (2003) conducted experiments to show that 
cracked particles serve as the origins of MSFC formation in 7075-T651. Other experimental results 
indicate that fatigue cracks in 7075-T651 are formed from the fractured Fe-bearing constituent particles 
located on the specimen surface (Xue et al. 2007). Some particles crack, while some particles debond 
from the matrix, but the debonded particles are much less effective in the nucleation of matrix cracks. 
Therefore, particle cracking is the dominant incubation mechanism of consequence in this alloy. Figures 
1(a) and 1(b) are micrographs of a region surrounding a constituent particle after 3000 cycles of R = 0 
constant amplitude loading at a far-field strain range of 1% in the rolling direction (RD).   Figure 1(a), a 
SEM micrograph, shows the three phases of MSFC formation: (i) incubation, (ii) nucleation, and (iii) 
propagation.  Generally, the crack is propagating on a plane defined by the normal direction (ND) and 
transverse direction (TD). Figure 1(b), an orientation imaging micrograph (OIM) shows the orientations 
of the surrounding grains in the aluminum matrix. 
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Figure 1.  Micrographs of an Al7Cu2Fe constituent particle on the surface of a fatigue loaded 
7075-T651 rolled plate. (a) SEM micrograph showing regimes of (i) incubation, (ii) 
nucleation, and (iii) microstructurally short crack propagation, and (b) [001] inverse pole 
OIM image showing the surrounding grain structure. 

 
In figure 2(a), many constituent particles (white) are observed embedded in the aluminum matrix.  This 
SEM image was taken in a highly-stressed region with the sample under load, so that many fatigue cracks 
(black) can be observed.  The larger field of view, figure 2(a), illustrates the stochastic nature of the 
fatigue phenomena at the microstructural scale.  Under higher magnification, it is observed that most 
particles do not crack, figure 2(b), and of the few that do, figures 2(c) and 2(d), fewer nucleate a matrix 
crack and even fewer matrix cracks continue through MSFC propagation, figure 2(d).  
 
From experimental observations, it has been hypothesized that particle aspect ratio and size, grain 
orientation, and strain level are the key parameters to explain the stochastic nature of particle cracking. In 
this paper, this hypothesis is tested using a combination of observations, measurements, and finite 
element (FE) analyses. The overall objective of this series of papers is to describe the development and 
validation of a computational simulation system capable of reproducing the mechanics and stochastic 
behavior of MSFC formation, as apparent in figure 2(a).  A necessary first step is to answer quantitatively 
the question: Given a distribution of particles in a highly stressed area, which particles will crack?  The 
answer to this question is important for simulating the next stages of MSFC formation: inserting all 
particles into a microstructural model for these stages is computationally intractable and physically 
unnecessary 
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Figure 2.  (a) SEM image of 7075-T651 under load, showing multiple, microstructurally small 
fatigue cracks.  Close-up images show (b) an uncracked particle, (c) a cracked particle where the 
crack did not extend into the matrix, and (d) a cracked particle where the crack did extend into the 
matrix. 

 
This paper is organized to answer this question systematically, and the strategy is depicted in figure 3. 
First, Section 2 contains a description of, and results from numerous finite element analyses performed on 
an idealized single grain/single surface particle model. The key variables studied are applied strain level, 
grain orientation, and particle aspect ratio. A response surface is then developed for a specific stress 
component at a particular point in the particle, σp. Next, a technique for determining a distribution of 
particle strength as a function of fracture toughness, KIC, and particle size is described in Section 3. In 
Section 4, the results from Sections 2 and 3 are combined into a particle cracking criterion, charted in 
figure 3: a particle cracks if a measure of σp exceeds the particle strength, σcr. This criterion can be 
viewed as a filter or function dependent on distributions of particle aspect ratio, grain orientation, strain 
level surrounding the particle, particle size, particle fracture toughness, KIC, and intrinsic flaw size, given 
by a  material parameter, C, discussed in Section 3. This function is applied to observed particle 
distributions to predict particle cracking frequency.  Section 5 presents a preliminary validation study of 
this criterion by comparing the predicted particle cracking frequency with experimental observations 
performed at Northrop Grumman Corporation. Section 6 summarizes observations and conclusions. 
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Figure 3.  Flowchart of steps taken in this study to predict the frequency of particle cracking. 
 

2. Methodology for generating a particle stress response surface 
The objective of this section is to describe the development of  a response surface from which the crack 
incubation driving force, i.e. tensile stress, can be determined for arbitrary particle configurations 
observed in 7075-T651.  An extensive series of FE analyses is performed on a baseline model.  Each 
analysis has a unique combination of three variables: grain orientation, particle aspect ratio, and applied 
strain level.  Together, these FE analyses cover the breadth of these three variables for the material and 
load histories studied herein. The resulting particle tensile stresses from these analyses are consolidated 
into a response surface. 
 
2.1. Finite element model: geometry, boundary conditions, and verification 
The baseline structural model chosen for this study is an idealization of the interaction of a single particle 
with its surrounding matrix.  As can be seen in figures 1 and 2, particle sizes and shapes are highly varied, 
as are their locations within grains. In a rolled 7075-T651 microstructure, constituent particles are 
elongated in the RD.  Given the statistical objective of this study and initial hypotheses that absolute 
particle size and aspect ratio will be important geometrical variables, a simple shape that can account for 
these variables is desirable.  Therefore, particle shape is idealized as ellipsoidal with the major axis 
aligned with the RD.  It could be argued that such a simple particle geometry ignores the potential for 
higher stress amplification from irregular geometry, that is, such a simplification would skew the statistics 
by missing the particles most highly stressed because of local stress concentrations due to their geometry.  
However, all particles have some form of local stress concentrator, yet very few of them crack. Therefore, 
surmised, highly local stress concentration cannot be a statistically dominant influence. This is likely due 
to the diminution effect of highly local plastic deformation (Gao et al. 2004). 
 
Further, in the baseline model, the idealized particle is on a RD-ND surface at a stress concentrating 
location. This location accounts for the fact that fatigue cracks most often begin at structure-scale 
geometric stress-risers. These produce gradients in local fields wherein highest values are most often on 
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surfaces.  Even in the absence of stress gradient influence, Mei and Morris (1993), for example, showed 
that, in an otherwise uniform stress field, inclusions experience higher stress on a free surface than in the 
interior. 
 
Finally, in the baseline model, the idealized particle is centered on a RD-ND surface of a single grain, 
idealized as a cube. This simplification assumes that particles are very small compared to their containing 
grain, and that the statistics of particle cracking are dominated by intra-granular particles. Therefore, the 
baseline structural model is a semi-ellipsoidal surface particle in a cubic grain, figure 4.  In the analyses to 
populate the response surface, the particle is modeled as a linear elastic, isotropic solid, and the grain as a 
rate-dependent, face-centered cubic (FCC) crystal plastic solid. This model has no inherent material 
length scale, so the absolute size of the baseline model is irrelevant and chosen for convenience. The 
constitutive model of the grain is detailed in Section 2.2. 
 
 

 

 
Figure 4.  Typical surface mesh on an example baseline structural model.  

 
The boundary conditions applied to the model are intended to emulate strain fields in a grain located on 
the surface at a notch tip of a double edge-notched (DEN) specimen.  To obtain an accurate description of 
these strain fields, engineers at Northrop Grumman Corp. created an elasto-plastic FE model of a DEN 
specimen (Fridline 2007). The strain at the highly stressed notch tip was computed after applying cyclic 
load boundary conditions, figure 5, indicative of the experiment discussed later, in Section 5. A maximum 
notch strain of 1% in the RD with a corresponding R value of 0.07 was computed.  Based on this analysis, 
displacement boundary conditions were applied to the surfaces of the baseline model such that the strain 
in the RD was 1%.  Since the baseline model represents a grain embedded within a larger structure, the 
TD and ND components of strain in the baseline model are typically non-zero.  Specifically, the out-of-
plane boundary conditions on surfaces with normals in the TD or ND are between the two extremes of 
traction-free and fixed in the direction of the face normal.  Thus, two sets of boundary conditions that 
represent these extremes envelope the actual conditions.  In an initial sensitivity study, the RD normal 
tensile stress at point A in a particle, figure 4, was computed to be about 8% higher with the latter 
boundary conditions applied and particle aspect ratios RD:TD:ND = 11:3.5:3.5 for one particular grain 
orientation.  At this time, it is unknown which boundary condition case better represents an embedded 
grain statistically.  Therefore, all subsequent FE analyses used in the development of the response surface 
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were conducted for both the unconstrained and constrained cases.  Resulting differences in the particle 
cracking frequency, due to the two boundary conditions, are presented in Section 4.   
 
 

 
 

Figure 5.  (a) Double edge notch specimen; W = 19 mm, H = 12.7 mm, r = 2.4 mm, h = 5.7 mm 
(b) Finite element computed notch strain and remotely applied cyclic loading. (Courtesy of 
Northrop Grumman Corp.) 

 
Additional assumptions involved in the generation of the particle stress response surface using the 
baseline model are: 
 

(i) Structural models are initially stress-free;   
(ii) The particle and matrix are perfectly bonded, and; 
(iii) Particle tensile stress is accurately obtained when only the influence of the surrounding grain is 

considered. 
 
The first assumption is made because it is expected that the residual stresses are negligible when 
compared to the stresses induced by mechanical loading for hot-rolled materials. The second assumption 
is conservative, since any debonding would result in reduced tensile stress in the particle. The third 
assumption is the subject of an in-depth study which will be presented in a later publication. 
 
A verification study was conducted to determine the level of finite element mesh refinement required in 
the response surface generation.  Mei and Morris (1993) developed a semi-analytical technique for 
computing the stress field in and around ellipsoidal particles under conditions of linear elasticity for 
geometry and boundary conditions that are equivalent to the baseline model. To compare their semi-
analytical solution with the present FE results, the baseline model was assigned linear elastic, isotropic 
material properties for both the grain and particle, where the particle elastic modulus was 3 times that of 
the grain, to match one of the solutions from Mei and Morris.  The macroscopic elastic modulus of 7075-
T651, 72 GPa, was assigned to the grain and, as a result, a modulus of 216 GPa was assigned to the 
particle.  The particle was defined to be hemispherical, i.e. aspect ratio RD:TD:ND = 1:1:1. Also, 
following Mei and Morris, unit traction was applied uniaxially in the RD.  The baseline model was then 
analyzed using 3 levels of mesh refinement: 6,000; 12,000, and; 25,000 degrees of freedom (dofs).  The 
stress values were queried at a subsurface distance of 0.05 µm, following Mei and Morris.  Figure 6, a 
plot of the RD stress components from point A to point B, figure 4(a), illustrates that with a minimum of 
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25,000 well-graded dofs, convergence of the FE computed stress to the analytical stress is acceptable.  
Mesh densities significantly greater than the finest level plotted in figure 6 were used in the FE analyses 
for response surface generation.  A similar convergence study was performed for an additional baseline 
model with the FCC constitutive model for the grain. The difference in stress at Point A was less than 5% 
between FE models with about 10,000 and 100,000 dofs. 
 
An in-house FE analysis code, Finite Element All Wheel Drive (FEAWD), was used to perform these 
analyses. The code has a parallel driver, which coordinates the partitioning, formulation, assembly, and 
solution of non-linear finite element equations. It is based on standard packages including MPI (Pacheco, 
1997), ParMetis (Karypis et al. 2003), PETSc (Balay, et al. 2006), and the Cornell Fracture Group's 
FemLib library (Cornell Fracture Group 2007), which contains an implementation of the crystal plasticity 
model used during response surface generation. Ten-noded, hybrid, tetrahedral elements were used 
exclusively in all models. 

 

 
 

Figure 6.  Mesh refinement verification results, comparing present FE results to a semi-analytical 
solution for a hemispherical surface inclusion in an infinite half-space (Mei and Morris 1993).  
Path A-B shown in Figure 4. 

 
It was shown by Mei and Morris that the RD component of stress is nearly constant throughout a 
hemispherical surface particle (within 5%) when a linear elastic, isotropic model is applied to both the 
grain and particle.  Because the particles considered here are significantly stiffer than the surrounding 
grain, the particle is subjected to higher stress.  However, this is only necessarily true when the baseline 
model is undergoing linear elastic deformation, which is different than the FCC crystal plasticity model 
used to generate the response surface. In this latter case, depending on the surrounding grain’s orientation, 
the particle can actually be relieved of stress after the onset of slip.  For some orientations, this occurs 
because the grain loses its ability to transfer load to the particle. During loading, plastic slip first occurs 
along the particle-grain interface; the location on the interface where this first occurs is dependent on the 
surrounding grain’s orientation. It can be expected that the orientation of the surrounding grain in the 
baseline model will affect the location of maximum stress in the particle. However, throughout the 
generation of the response surface, the RD component of particle stress was queried at point A, figure 4.  
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This was to stay consistent with observations that when particles crack, they tend to crack near the mid-
plane, near point A. 
 
2.2. Finite element model: constitutive behavior 
The response of the 7075-T651 matrix material is governed by a crystal elasto-viscoplastic formulation 
that captures the relevant microstructural mechanisms.  The overall formulation follows the work of 
Matous and Maniatty (2004) and is summarized here for completeness. At the grain scale, the 
deformation response to stress is assumed to follow a standard multiplicative decomposition, consisting 
of an elastic/lattice deformation and viscoplastic slip along crystallographic slip systems, which is 
accommodated by dislocation motion and is volume preserving (Lee, 1969).  Summarizing, 
 

pe FFF ⋅= ,             (1) 
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where  and  correspond to the elastic/lattice and plastic deformation gradients, respectively; L is 
the velocity gradient;  denotes the plastic velocity gradient on the relaxed, intermediate configuration; 

 is the rate of shearing on slip system α; N

eF pF
pL̂

αγ& s denotes the total number of slip systems; and 

 is the Schmid tensor.  In addition,  and  are the slip direction and slip plane normal 
for the α slip system, respectively, and 

ααα m⊗sP = αs αm
⊗ indicates dyadic product.  The twelve primary 111{ } 110  slip 

systems for FCC crystals are considered here. 
 
For the elastic response, a linear relationship, with cubic symmetry, is assumed between the second Piola-
Kirchhoff stress, , and the Green elastic strain, , on the relaxed configuration, which can be 
expressed as 

Ŝ eÊ
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where σ is the Cauchy stress,  is the fourth order elasticity tensor, I is the second order identity tensor, 
and the fourth order tensor Ξ  with respect to the lattice coordinates is simply 

Ĉ
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0ˆˆˆ̂ =Ξ lkji  otherwise,             (7) 
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where the hat indices indicate the lattice configuration, which may coincide with the relaxed 
configuration.  The three elasticity parameters µ, λ, and η are related to the stiffness matrix elasticity 
coefficient as 44C=µ , 12C=λ , and 111244 CC2C2 −+=η . 
 
For the plastic response, a power law relates the rate of shearing to the resolved shear stress, τα, on the on 
the α slip system,  
 

1
1

0
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α

α

α
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where 0γ&  is a reference shearing rate, m is the strain rate sensitivity, and gα is the resistance to slip on the 
α slip system.  The resolved shear stress on the α slip system can be related to the stress and elastic 
deformation through 
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To complete the model, it remains to define the evolution of the resistance to slip, i.e. hardening, on the 
slip systems. 7075-T651 is a precipitation strengthened alloy, and the hardening is due to Orowan's 
(1947) mechanism of dispersion hardening.  This mechanism is associated with dislocations bowing out 
between and forming loops about precipitates.  The η’ precipitates, which form as disks (thickness about 
15 nm and diameter about 45 nm assumed here) on the {111} planes, are the primary strengthening phase 
(Li et al., 1999).  Hart (1972) proposed a model for dispersion hardening due to short range stresses for 
spherical precipitates and Mori and Tanaka (1973) proposed a model based on average internal stresses.  
For spherical precipitates, these models give similar predictions.  More recently, models based on the 
Mori-Tanaka approach have been proposed in the context of crystal plasticity formulations (Schmitt et al., 
1997 and Han et al., 2004).  A model building on that developed in Schmitt et al. (1997), but that allows 
for saturation, is defined here.  First, the resistance to slip, gα, in Equation (9) is defined to evolve 
according to 
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where g0 is the initial resistance to slip, gs is the saturation value of g, G0 is associated with the rate of 
hardening, and Hαβ is the slip interaction matrix that defines the relative strength of self and latent 
hardening on the slip systems.  Here it is assumed that the hardening is due to internal stresses arising 
from the incompatibilities between the plastic strain field due to slip and the elastic precipitates.  If one 
assumes that the elastic properties of the matrix are the same as those of the inclusion and approximate an 
inclusion as elliptical, then, using Eshelby's theory (Mura, 1987), the change in stress near the inclusion 
due to an increment in plastic deformation is 
 

)ˆ(:)(:ˆˆ tp ∆−Φ−Θ= DCS∆ ,         (11) 
 

where Θ is the Eshelby tensor, Φ is the fourth order identity tensor,  is the symmetric part of , and 
( ) can be thought of as the eigenstrain in the precipitate.  The assumption that the elastic 
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pL̂

t∆− pD̂

 10



properties of the matrix and inclusion are the same is a reasonable approximation since the η’ precipitates 
are precursors to MgZn2 η precipitates, and the elastic properties of MgZn2 (hexagonal) and Al are 
relatively close.  Assuming the precipitates form with equal likelihood on the four {111} planes, then the 
Eshelby tensor, Θ, can be taken as the average Eshelby tensor for these four cases.  Now, computing the 
increment in resolved shear stress on the slip systems using Equation (9) and substituting the symmetric 
part of Equation (4) for , we obtain pD̂
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where  is the symmetric part of .  If one assumes the elastic deformations are small and neglect 
the higher order term, i.e. let , making use of the symmetry of , and let this increment in 
stress be associated with the increase in hardening, then 
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can be used to define Hα,β, where ξ is a scalar coefficient that is defined to make the diagonal elements of 
Hα,β equal to one.  The values for Hα,β along with the slip system numbering scheme used for reference 
are given in table 1. 
 

Table 1.  Hardening interaction matrix and slip system numbering. 

 

slip system # ID 1 2 3 4 5 6 7 8 9 10 11 12 

( ) [ ]011111  1 1.0 0.50 0.50 0.50 0.59 0.088 0.088 0.50 0.59 0.18 0.088 0.088

( ) [ ]011111  2 0.50 1.0 0.50 0.59 0.50 0.088 0.18 0.088 0.088 0.088 0.59 0.50 

( ) [ ]101111  3 0.50 0.50 1.0 0.088 0.088 0.18 0.088 0.59 0.50 0.088 0.50 0.59 

( ) [ ]101111  4 0.50 0.59 0.088 1.0 0.50 0.50 0.59 0.50 0.088 0.088 0.18 0.088

( ) [ ]011111  5 0.59 0.50 0.088 0.50 1.0 0.50 0.088 0.088 0.18 0.59 0.088 0.50 

( ) [ ]101111  6 0.088 0.088 0.18 0.50 0.50 1.0 0.50 0.59 0.088 0.50 0.088 0.59 

( ) [ ]011111  7 0.088 0.18 0.088 0.59 0.088 0.50 1.0 0.50 0.50 0.50 0.59 0.088

( ) [ ]110111  8 0.50 0.088 0.59 0.50 0.088 0.59 0.50 1.0 0.50 0.088 0.088 0.18 

( ) [110111 ] 9 0.59 0.088 0.50 0.088 0.18 0.088 0.50 0.50 1.0 0.59 0.50 0.088

( ) [ ]101111  10 0.18 0.088 0.088 0.088 0.59 0.50 0.50 0.088 0.59 1.0 0.50 0.50 

( ) [101111 ] 11 0.088 0.59 0.50 0.18 0.088 0.088 0.59 0.088 0.50 0.50 1.0 0.50 

( ) [ ]110111  12 0.088 0.50 0.59 0.088 0.50 0.59 0.088 0.18 0.088 0.50 0.50 1.0 
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The 7075-T651 constitutive model was calibrated against experimental data provided by Jordan et al. 
(2007).  The FE model used for calibration was comprised of 299 hexahedral grains.  The grains were 
constructed with an aspect ratio of RD:TD:ND=25:4:1, which approximates the observed aspect ratio of 
50:4:1.  The rolling dimension was reduced to facilitate the creation of a FE model with a sufficiently 
large number of grains.  Grain orientations for the calibration model were assigned based on OIM 
measurements of 7075-T651. Material parameters are listed in table 2. 
 

Table 2.  Material parameters for 7075-T651. 

m 0.005 
g0 220 MPa 

0γ& 1.0 s-1

G0 120 MPa 
gs 250 MPa 

sγ& 5.0 e10  s-1

µ 28.3 GPa 
λ 60.9 GPa 
η 5.10 GPa 

 
The mechanical properties of the particles were determined with an atomic force microscope (AFM) 
equipped with a nanoindenter. For the particles of interest, Al7Cu2Fe, a mean value of 160.9 GPa 
(standard deviation of 7.56 GPa) was measured for Young’s modulus. This compares reasonably well to a 
slightly smaller mean value found by Oswald (2003). A Poisson’s ratio of 0.3 was assumed.   
 
2.3. Particle tensile stress under cyclic loading 
This section addresses the evolution of particle tensile stress under cyclic loading. The load history 
studied here is constant amplitude, with a maximum notch strain of 1%, figure 5.  The measured stress is 
σp, the RD tensile stress at point A in the particle, figure 4(a). 
 
In figure 7, the evolution of σp during such cyclic loading of a typical model is shown.  During the first 
half-cycle of loading, plastic flow occurs in the matrix adjacent to the particle. Upon unloading in the 
second half-cycle, the permanent deformations in the matrix cause a state of residual compression in the 
particle. During subsequent reloading, the residual compressive stress in the particle must be overcome 
before the particle experiences tensile stress.  Therefore, the net tensile stress in the particle at the peak of 
second loading cycle is lower than that for the first cycle. Since the load history is constant amplitude, 
subsequent loading cycles do not lead to an increase in σp. 
 
Based on these results, all models used in the generation of the response surface were subjected to 1% 
monotonic strain. This simplification implies that, if particles crack, they do so in the first loading cycle. 
This is in agreement with experimental observations, which have shown that about 50-85% of all particles 
that are going to crack, do so in the first load cycle, as discussed in Section 5.  
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Figure 7.  Computed σp vs. loading cycles for a typical single grain/single particle model under 
constant amplitude loading with a maximum strain of 1% and an R value of 0.07. 
 

 
2.4. Creating the particle tensile stress response surface 
To populate the particle tensile stress response surface, 1296 finite element analyses were conducted for 
each of the two boundary conditions considered, where each analysis corresponds to a specific 
combination of grain orientation, particle aspect ratio, and applied strain level. Lagrange interpolation 
functions were used to create a response surface from which σp can be interpolated given any arbitrary 
combination of these 3 variables. In this section, the dependence of the response surface on each 
individual variable and the functions used for interpolation between the stored results are discussed. 
 
2.4.1. Dependence of particle tensile stress on grain orientation 
Grain orientation is represented here as a Rodrigues vector, (r1, r2, r3). The Rodrigues space extends to 
infinity, but for crystals possessing sufficient symmetries, any orientation can be represented by its 
symmetric equivalent near the origin. For FCC crystals, the fundamental region of the underlying 
symmetry group is a truncated cube in Rodrigues space (Heinz and Neumann 1993), figure 8(a). The six 
cube face centers of this FCC fundamental region are a distance of 12 −  from the origin, while the 
eight planes truncating the corners of the cube are  3 31  from the origin. 
 
The FCC fundamental region was discretized into 444 linear tetrahedral elements with 144 vertices. The 
surface mesh for this discretization is shown in figure 8(b). Each vertex in this discretization corresponds 
to a modeled grain orientation. For each modeled grain orientation, σp was computed using the model 
discussed in Sections 2.1-3.  
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Figure 8.  (a) Fundamental region for FCC symmetry in of Rodrigues space. (b) Finite element 
discretization of the fundamental region with 444 linear tetrahedral elements and 144 vertices. 

 
The computed dependence of σp on grain orientation can be visualized by color contouring the FCC 
fundamental region. The σp distribution for a particle aspect ratio of RD:TD:ND = 11:3.5:1, 
unconstrained boundary conditions, and an applied strain of 1% is shown in figure 9. Since the 
microstructural anisotropy is taken into account in the material model, an anisotropic response is 
observed. It is clearly seen that grain orientation affects σp significantly: the maximum computed stress is 
about 30% higher than the minimum. In general, σp for the constrained boundary condition was 20 to 
30% higher than for the corresponding orientation with the unconstrained boundary condition.  This is to 
be expected because, under constrained boundary conditions, a higher stress is needed in the RD direction 
for the same level of applied strain in that direction.  For a simple case of uniform geometry and linear 
elastic response, one would expect the increase in stress to be in direct proportion to Poisson’s ratio.  For 
the present case, with a variable geometry hard inclusion and elasto-crystal-plastic response, the observed 
increase in σp is reasonable.  For use in the next two sections, three characteristic grain orientations are 
selected from those analyzed.  These are denoted the high, intermediate, and low stress orientations.  The 
corresponding orientation parameters and σp values are given in table 3. 
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Figure 9.  Computed σp  in FCC fundamental region with a particle aspect ratio of RD:TD:ND = 
11:3.5:1 and an applied strain of 1%, unconstrained boundary conditions. 

 
Table 3.  Computed results for three sample characteristic orientations for the unconstrained baseline model with a 

particle aspect ratio of RD:TD:ND = 11:3.5:1 and an applied strain of 1%. 

Orientation label Rodrigues parameters 
(r1, r2, r3) σp (MPa) 

High stress (-0.2071, 0.4142, -0.0858) 1302 
Intermediate stress (0.0858, 0.2071, -0.2071) 1180 

Low stress (0.0, 0.0, -0.4142) 991 
 
 
2.4.2. Dependence of σp on aspect ratio 
In this section, the relationship between σp and particle aspect ratio is investigated. Since results for each 
of the 144 orientations cannot be shown here, the 3 characteristic orientations given in table 3 are 
considered. During an initial investigation, RD:ND, RD:TD, and TD:ND aspect ratios of the ellipsoidal 
particles ranging from 1:1 to 10:1 , 2:1 to 10:1, and 1:1 to 5:1, respectively, were modeled. The computed 
dependence of σp on the particle aspect ratios, for the unconstrained boundary condition, is shown in 
figure 10.  Similar results were experienced for the constrained boundary condition. The computed σp 
increases as the RD:ND and RD:TD aspect ratios increase, and as the TD:ND aspect ratio decreases. The 
independent effect of particle aspect ratio on stress can account for a maximum σp 100% greater than the 
minimum for a given orientation. The combined effect of both the grain orientation and the particle aspect 
ratio on the tensile stress can produce differences of nearly 200%.   
 
Based on these preliminary studies, it was found that σp behaves approximately quadratically as a 
function of each aspect ratio.  For this reason, the σp response surface was populated using 9 different 
aspect ratios, enough for quadratic interpolation as discussed in Section 2.4.4.  
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Figure 10.  (a) Variation of particle aspect ratio, RD:ND (TD:ND = 1); (b) Dependence of σp on 
particle aspect ratio RD:ND, which is chosen equal to RD:TD, and grain orientation; (c) Variation 
of particle aspect ratio, RD:TD (RD:ND = 10:1); (d) Dependence of σp on particle aspect ratio 
RD:TD and grain orientation; (e) Variation of particle aspect ratio, TD:ND (RD:ND = 10:1); (f) 
Dependence of σp on particle aspect ratio TD:ND and grain orientation. Unconstrained boundary 
conditions. 

 
 
2.4.3. Dependence of σp on applied strain level 
In addition to grain orientation and particle aspect ratio, the applied strain level is another key parameter 
in determining σp. Let the particle aspect ratio be fixed at RD:TD:ND = 11:3.5:1 and consider the three 
characteristic orientations introduced in table 3. As the applied strain level is monotonically increased, a 
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nearly bi-linear response in σp is computed, figure 11. The results suggest that σp remains almost constant 
after the elasto-plastic transition for the low stress case but increases at almost the elastic slope for the 
high stress case.  The transition point corresponds to the initiation of plastic slip in the grain. The 
relationship between σp and applied strain, εapp, can be written as  

Tappapp
T

T
p εε,ε

ε
σ

σ <= , 

TappTTappp k εεσεεσ ≥+−= ,)( ,
        

(14) 
 
where (εT, σT) represents the transition point and k denotes the slope after the transition, figure 12. 
  
Note that for a given combination of grain orientation and particle aspect ratio, σp can be approximated as 
a function of εapp using equation (14).  This provides the basis for the stress response surface discussed in 
the following section. 
 

 

 
Figure 11.  Example computed σp vs. εapp. Particle aspect ratios RD:ND = 11:1 and 
TD:ND = 3.5 :1. Unconstrained boundary conditions. 
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Figure 12.  Piecewise linear approximation between σp and εapp. Unconstrained boundary 
conditions. 

 
2.4.4. Response surface for σp

A response surface for σp is created as a two-stage interpolation scheme using standard FE interpolation. 
The interpolation is performed first in orientation space and then in aspect ratio space. Using the 
information described in Sections 2.4.1-3, the response surface captures the dependence of σp on grain 
orientation, particle aspect ratio, and εapp. 
 
A total of 1296 separate FE simulations were performed to populate the response surface for each of the 
two boundary conditions considered.  This consisted of 144 grain orientations performed on each of the 9 
particle aspect ratios considered. Each individual analysis resulted in an approximately bi-linear stress-
strain relationship, Equation (14). The FE interpolation in orientation space is performed on the finite 
element mesh of the fundamental region, figure 8(b), while the interpolation in aspect ratio space is 
performed on a nine-noded quadrilateral (Q9), figure 13.  The Q9 was chosen to represent the quadratic 
relationship between σp and aspect ratio, as previously discussed in Section 2.4.2. 
 

 

 
Figure 13.  Nine-noded quadratic quadrilateral element used to interpolate σp for particle aspect 
ratio (RD:ND, TD:ND). 

 
The use of the response surface can be summarized in the following manner. Given an arbitrary set of 
inputs of applied strain level, εapp, grain orientation, R, and particle aspect ratio, AR, σp is determined as 
follows:  
 

(i) Locate the tetrahedral element, T, in the FCC fundamental region mesh, figure 8(b), which 
contains R; 

(ii) Determine the four corner nodes of T; 
(iii) Obtain the stress at each corner node using εapp and equation (14);     
(iv) Interpolate stress values using the shape functions of T and R: 

i
i

ij RN σσ ∑
=

=
4

1
)(        (15) 

(v) Repeat steps (i) through (iv) for the nine different aspect ratio values, populating the nine nodes 
shown in figure 13; 

(vi) Finally, interpolate σp using the Q9 shape functions and AR: 
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where Ni(R) are the standard four-noded tetrahedral element shape functions and Φj(AR) are the standard 
Q9 shape functions. 
 
A methodology for computing σp in an ellipsoidal particle has now been presented.  To complete the 
criterion for particle cracking, given a particle in a distribution of particles, the particle strength must also 
be known.  The following section details the process and assumptions of predicting the particle strength, 
which results from both experimentation and LEFM calculation. 
 
3. Estimation of particle tensile strength 
Direct measurements of Al7Cu2Fe particle strength are not available to the best knowledge of the authors. 
Therefore, this section describes a technique for estimating particle strength, σcr.  The following 
assumptions are made: 
 

(i) If a particle cracks, it does so in the first half-cycle of loading; 
(ii) σcr is a function of particle size, due to the presence of inherent particle flaws; 
(iii) An inherent surface flaw exists that lies perpendicular to RD, figure 14; 
(iv) The inherent flaw size is much smaller than the particle size; 
(v) The shape of this inherent flaw is semi-elliptical, figure 14; 
(vi) af and bf are proportional to ap and bp; and, 
(vii) LEFM conditions apply. 

 
As stated in Section 2, assumption (i) is supported by experimental observation.   Assumption (ii) has 
been commonly used in previous works (Murakami and Endo 1994, Curtin 1994).  The flaw is assumed 
to be oriented perpendicular to the direction of maximum tensile stress, assumption (iii),  because this is 
the orientation that yields the highest Mode I stress intensity factor.  Assumption (iv), that af << ap, is 
supported by Ghosh and Moorthy (1998).  Furthermore, since these flaws are undetectable at the 
microstructural scale, their actual shape and size is unknown.  Thus, for simplicity, the flaw shape is 
assumed to be semi-elliptical and af  and bf  are assumed to be proportional to ap and bp, assumptions (v) 
and (vi), respectively.  Specifically, the proportionality assumption can be expressed as:  
 

pf aCa = , pf bCb =          (17) 
 
where C is a material dependent parameter.  Finally, assumption (vii)  was made because the particles are 
in a brittle state, with a measured very low toughness.  Since LEFM conditions, a semi-elliptical shape, 
and C<<1 are assumed, the initial flaw configuration, figure 14, can be approximated as a semi-elliptical 
surface crack in an infinite plate with a well known critical Mode I stress intensity factor solution (Raju 
and Newman 1979), 
 

),( ffcrIC baFK πσ= .        (18) 

 
 
Solving (18) for σcr and substituting (17) into (18) yields the strength equation used herein,  

 
),(),( pp

IC

ff

IC
cr

baFC
K

baF
K

ππ
σ == .      (19) 

As indicated in Section 4.2, a distribution of σcr can be calculated given distributions of KIC, C, ap, and bp . 
Values of KIC for twelve Al7Cu2Fe second-phase particles were estimated from a Vickers hardness test 
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with a nano-indenter following the procedure established by Lawn (1993).  The mean value of KIC was 
determined to be 0.14 MPa√m with a standard deviation of 0.07 MPa√m. Figure 15 shows the 
relationship among σcr, ap, and C for KIC = 0.14 MPa√m.  Specifically, for all values of C, the strength 
decreases as particle size increases; therefore, larger particles are more likely to crack than smaller 
particles.  This is consistent with observations (Brockenbrough, et al. 1994, and Gruenberg, et al. 1999).  
Thus, two questions remain: Is C a material dependent parameter? And, if so, what is the range of C 
values for Al7Cu2Fe?  A preliminary answer to the latter question is given in the following section. 
 

  

 

 

Figure 14.  Cross-section of a semi-elliptical surface particle, with major and minor radii, ap 
and bp, containing a pre-existing, semi-elliptical surface crack, with major and minor radii, af 
and bf.  
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Figure 15.  Particle tensile strength, σcr, vs. particle radius, ap, for KIC = 0.14 MPa√m. 

 
3.1. Calibration of the particle tensile strength parameter, C 
The material parameter, C, was calibrated for one microstructure sample, figure 16(a), with a single 
cracked particle, observed on the surface at a notch tip of a DEN specimen.  For this sample, the 
experimentally recorded local texture, microstructure geometry, and applied strain at the time of particle 
cracking were replicated in a FE model, figure 16(b).  The model size is that of the observation area, 50 
µm in the RD and 30 µm in the ND.  The microstructure was not observed in the third dimension, the TD.  
Therefore, a 2.5-dimensional replication model was created:  the geometry was extruded 7 µm in the TD 
and all grains were assigned the orientations observed on the free surface.  Observations of the 
microstructure were made only prior to and after the first half-cycle, and it was found in the latter 
observation that the particle had cracked.  Thus, it was assumed that the particle cracked at full load, 1% 
strain in the RD.  The boundary conditions for the replication model were identical to those discussed in 
the baseline model, for both the constrained and unconstrained cases.  The constitutive models applied to 
the particle and grains are those described in Section 2.2. For the resulting finite element model, a mesh 
convergence study was run for the two boundary conditions considered, figure 17.  Three meshes (0.7 
million dofs, 1.3 million dofs, and 4.2 million dofs) were run for each of the two boundary conditions.   
 
The maximum particle stress for the two boundary conditions was computed to be located at point P, 
figures 16(b) and 17.  The stress found here for the most refined mesh, 1583 MPa and 1351 MPa for the 
constrained and unconstrained boundary conditions, respectively, is the assumed σcr for this particle.  If 
2ap = 3.48 µm is taken to be the particle diameter on the free surface, figure 16(a), then the value of ap is 
1.74 µm.  By using these values for σcr and ap, and a mean KIC of 0.14 MPa√m with a standard deviation 
of 0.07 MPa√m, and assuming semi-circular shape crack, Equation (19) was solved for C to get 
corresponding values: 0.0027 with a standard deviation of 0.0013 for the constrained case, and 0.0037 
with a standard deviation of 0.0018 for the unconstrained boundary condition.  Obviously, the value of C 
depends on the boundary condition applied because the parameter is being calibrated for only a single 
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microstructural sample.  This difference in C values will result in a corresponding difference in predicted 
particle cracking frequency, as discussed in the next section. 
 

 

 
Figure 16.  (a) SEM/OIM image of a 7075-T651 microstructure on the RD-ND free surface. 
(Courtesy of Northrop Grumman Corp.) (b) Finite element mesh for the replication model, 
where colors indicate unique regions: grains and a particle.   
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Figure 17.  (a) Tensile stress, σRD, plot for a coarse mesh for the unconstrained boundary 
condition (b) Tensile stress, σRD, plot for a coarse mesh for the constrained boundary condition. 

 
The relationship shown in figure 15 governs only the statistical resistance side of the particle cracking 
criterion. An input to figure 15 with a value of C and a measured distribution of ap and bp values produces 
an output distribution of σcr values.  However, it has been shown in Section 2 of this paper that texture, 
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aspect ratio and strain level govern the statistical driving force side of the equation: a large particle with a 
large inherent flaw might find itself in a relatively low tensile stress state and not crack.  The process for 
comparing these distributions of strength and stress is presented in the next section. 
 
4. Prediction of particle cracking frequency 
In this section, a method for predicting cracking of both individual particles and distributions of particles 
is discussed.  The particle cracking prediction utilizes both the particle tensile stress response surface, 
Section 2, and the estimation of particle strength, Section 3.  The predicted frequency of particle cracking 
is compared with the experimentally observed frequency in Section 5. 
  
4.1. Predicting cracking of a single particle  
Particle cracking is governed by a comparison of the RD tensile stress at point A in the particle, σp, with 
the particle strength σcr; if the former exceeds the latter, the particle will crack. The process for 
determining whether a particle cracks is shown schematically in figure 3. The input variables include 
applied strain level, grain orientation, particle aspect ratio, particle size, particle fracture toughness, and 
the material inherent flaw size parameter, C. The procedure can be summarized as follows: 
 

(i) Use the stress response surface to interpolate σp from the input applied strain level, grain 
orientation, and particle aspect ratio; 

(ii) Use equation (19) to evaluate σcr from the input variables of particle size, particle fracture 
toughness, and C; 

(iii) Predict particle cracking if σp   ≥  σcr. 
 
4.2. Estimating the frequency of particle cracking  
Different volumes of 7075-T651 undergoing the same processing steps exhibit statistical variability in 
microstructural features. This variability affects the material performance directly, causing scatter in both 
σp and σcr for individual particles. 
 
The process described in Section 4.1 provides a link between the statistical variability of microstructural 
features and the probability of particle cracking. This process can be viewed as a function, which can be 
evaluated on measured distributions of particle size and aspect ratio, and grain orientation to obtain the 
frequency of particle cracking. 
 
Based on known distributions for particle size, aspect ratio, and texture (Campman 2005, Harlow et al. 
2006, Rollett 2006), several statistically accurate realizations were generated, each of which contained 
10,000 particles and grain orientations. The observation of particle sizes was experimentally limited to 
particles with area, in the RD-ND plane, greater than 6 µm2; therefore, this paper does not consider 
particles with areas less than 6 µm2.  The applied strain was fixed at 1%, the fracture toughness at 
0.14 mMPa , and C at 0.0037, the mean value computed for the unconstrained boundary conditions. The 
particle cracking frequency is defined as follows:  
 

 
particlesofnumbertotal

particlescrackedofnumberfrequencycrackingparticle =     (20) 

 
Figure 18 shows the resulting histograms for σp, based on unconstrained boundary conditions, and σcr for 
one such 10,000 particle realization. 
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Figure 18.  Histograms of (a) σp and (b) σcr generated from a 10,000 particle realization, with the 
applied strain εapp equal to 1%, the fracture toughness  equal to 0.14 mMPa , and C equal to 
0.0037. 

 
Figure 19 shows the histogram of the difference, ∆σ = σcr - σp, between particle strength and stress, based 
on unconstrained boundary conditions. The subset of the histogram containing those particles with ∆σ < 0 
corresponds to the cracked particles. Hence, the normalized area of the particles with ∆σ < 0 is an 
approximation of the probability of particle cracking. For example, for the sample shown in figure 19, the 
frequency is 2.3%.  
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Figure 19.  Histogram of the difference, ∆σ = σc - σp r, between particle strength and stress. The 
subset of the histogram where ∆σ < 0 corresponds to the cracked particles. 

 
Twenty 10,000 particle realizations were processed for each of the boundary conditions considered for the 
particle stress response surface in this manner, and these produced a mean particle cracking frequency of 
2.2%, with a standard deviation of 0.16% for the unconstrained boundary condition and 4.9% with a 
standard deviation of 0.27% for the constrained boundary conditions.  This resulted in an overall mean 
particle cracking frequency of 3.6% with a standard deviation of 1.4%. Of the forty particle realizations 
that were processed, the minimum frequency found was 1.9% and the maximum was 5.3%.  The two 
boundary conditions were considered in order to place upper and lower bounds on the range of predicted 
particle cracking frequency. 
 
5. Preliminary validation 
The discussion to this point has set forth a methodology for predicting Fe-bearing particle cracking in a 
7075-T651 microstructure.  A prediction of particle cracking can now be made for an individual particle 
or a distribution of particles.  Two validation experiments, separate from the calibration experiment 
discussed in Section 3, were performed expressly for the validation of this methodology and are discussed 
in this section.  A comparison of the particle cracking frequency observed in these experiments is made 
with the prediction in Section 4.2. 
 
The DEN specimen geometry and area observed microscopically during the two validation experiments 
are shown in figure 20.  At one edge-notch in each DEN specimen, an area of 0.75 mm2 was observed to 
record the frequency of particle cracking during the application of cyclic loading.  Using the cyclic load 
and specimen dimensions shown in figure 5, particle cracking was intermittently recorded within the 
observation area. 
 
The observed particle cracking data for both DEN specimens are given in table 4.  In specimen #1, there 
were 792 Fe-bearing particles in the observed area of which 59 particles were cracked before loading the 
specimen and an additional 446 particles were below the minimum size of 6 µm2.  The remaining 287 
particles were tracked throughout loading and observations were recorded at the intervals given in column 
1 of table 4; after reaching the first peak load, observations were recorded through 3000 load cycles at a 
reduced observation frequency.  This was done to obtain information about particle cracking frequency 
versus time of occurrence within the observed area.  Similarly, for specimen #2, 631 particles were 
observed with 42 particles cracked before loading the specimen and an additional 346 particles below the 
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minimum size of 6 µm2.  The remaining 243 particles were tracked throughout loading at the same 
intervals as specimen #1. For specimen #1, 84% of the particles that eventually cracked due to cyclic 
loading did so by the end of the first load cycle, and 50% in specimen #2. All of the particles that would 
eventually crack, had cracked by 300 load cycles.  The observed percentages of particles cracking due to 
loading, 7.3% for specimen #1 and 1.2% for specimen #2, are in good agreement with the predicted mean 
value of 3.6% using the response surface methodology developed herein.  The combined percentage of 
observed particles that cracked during the first load cycle for both specimens was about 4.5%. 
 
 
 

 
 

 
 

Figure 20.  DEN specimen geometry showing the location and size of the area observed during 
the recording of particle cracking frequency for both DEN specimens. 

 
Table 4.  Accumulated percentage of Fe-bearing particles that cracked under load during the first half-cycle of 

loading for two DEN specimens.  

Load (Cycles) Specimen #1 (%) Specimen #2 (%) 

0.3 0.0 0.0 
0.4 6.6 0.8 
0.5 7.3 1.2 

 
6. Observations and conclusions 
This is the first in a series of papers on a computational simulation system capable of reproducing the 
mechanics and statistics found in the MSFC formation phase for 7075-T651.  Throughout this series, 
wherever possible, statistically accurate morphologies and textures are explicitly included in all three-
dimensional FE models.  This paper addresses the first stage of MSFC formation: predicting the statistics 
of crack incubation.  A mechanics-based prediction of particle cracking can now be made using 
distributions of particle size and aspect ratio, and grain texture.  The observed statistics of incubation must 
be accurately predicted to simulate properly the stochastic nature of subsequent stages of MSFC 
formation. Future papers will address the two subsequent stages, nucleation and microstructurally small 
crack propagation, and provide extensive validation of the implemented criteria.   
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The principle adopted herein is that a particle cracks if σp, the particle tensile stress in the RD at point A, 
figure 4(a), exceeds σcr, the particle strength. A response surface was generated, for the two separate 
boundary conditions that bound the possible range of particle stress, using 1296 three-dimensional elasto-
viscoplastic FE analyses for each condition, from which σp can be obtained for any combination of strain 
level, grain orientation, and particle aspect ratio. Seven key assumptions were made for the baseline 
model used in the development of the response surface: 
 

(i) Structural models are initially stress-free;  
(ii) Boundary conditions were applied for unconstrained and constrained tension in the RD; 
(iii) Maximum particle tensile stress occurs:  

a. During the first load cycle; 
b. At the particle’s free-surface centroid, point A; 

(iv) The particle and matrix are perfectly bonded; 
(v) Particle tensile stresses are accurately obtained when: 

a. Idealizing the particle as semi-ellipsoidal, and; 
b. Only the influence of the surrounding grain is considered. 

 
The value of σcr was determined based on measured fracture toughness, particle size and an inherent flaw 
size material constant, C, Equation (20).  Seven key assumptions were made for the estimation of σcr: 
 

(i) If a particle cracks, it does so during the first cycle of loading; 
(ii) σcr is a function of particle size, due to the presence of inherent particle flaws; 
(iii) An inherent surface flaw exists that lies perpendicular to the loading direction, figure 14; 
(iv) The inherent flaw size is much smaller than the particle size; 
(v) The shape of this inherent flaw is semi-elliptical, figure 14; 
(vi)    af and bf are proportional to ap and bp; and, 
(vii) LEFM conditions apply. 
 

From the development of the response surface, important findings are: 
 

(i) The orientation of the surrounding grain causes a variability of up to 30% in σp;   
(ii) The aspect ratio of the particle accounts for variability of up to 100%; 
(iii) The combined effects of grain orientation and particle aspect ratio cause variability of up to 

200%. 
 
From the estimation of the particle tensile strength, important findings are: 
 

(i) σcr is particularly sensitive to C;   
(ii) The calculated mean value of C was 0.0037, with a standard deviation of 0.0018 for the 

unconstrained boundary condition, and 0.0027, with a standard deviation of 0.0013 for the 
constrained boundary condition. 

  
The value of C was determined based on the results of one replication model. Future work will produce 
more replication models to improve these estimates. 
 
The process for the prediction of particle cracking, as discussed in Section 4, can be viewed as a Boolean 
function that is evaluated on measured distributions to obtain the frequency of particle cracking. A series 
of 10,000 simulated particle realizations was processed and a frequency of particle cracking of 2.2% with 
a standard deviation of 0.16% was predicted for unconstrained boundary conditions and a mean of 4.9% 
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with a standard deviation of 0.27% for constrained boundary conditions.  This resulted in an overall mean 
predicted particle cracking of 3.6% with a standard deviation of 1.4%. The predicted particle cracking 
frequency was in good agreement with the average experimentally observed particle cracking frequency 
of about 4.5%.  Future work will determine the variation in predicted particle cracking frequency due to 
the variation in C and KIC. 
 
When simulating the MSFC formation phase, inserting all particles into a microstructural model for these 
stages is computationally intractable and physically unnecessary. The capability to predict which particles 
will crack can be used as a filter. This filter helps substantially reduce the number of particles that need to 
be included in the microstructural models and forms the basis of the future work on the subsequent stages 
of MSFC, crack nucleation and microstructurally small crack propagation. 
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