# A geometric approach to stochastically modeling fatigue crack propagation at the microstructural length scale

M.G. Veilleux, J.D. Hochhalter, J.E. Bozek, P.A. Wawrzynek, A.R. Ingraffea

Cornell University

12<sup>th</sup> International Conference on Fracture Ottawa, Ontario, Canada July 15, 2009









Need for probabilistic da/dN predictions accounting for inherently stochastic processes at the µscale



UNIV.

Geometric approach to probabilistically predicting da/dN at the  $\mu$ scale





#### **Presentation outline**

- I. Microstructure geometry modeling
  - A. First-phase realizations
  - B. Two-phase realizations
  - C. Automated microstructure meshing
  - D. Microstructurally small fatigue cracks (MSFC's)
    - 1. Explicit geometry representation
    - 2. Material state mapping
- II. MSFC propagation simulation
  - A. MSFC propagation terminology
  - B. Intragranular propagation
    - 1. Direction criteria: Stage I and Stage II
    - 2. Rate criterion
- III. Ongoing work & conclusions



# First-phase realizations



to-grid and extrusion, or (c) voxellation and marching cubes



# Two-phase realizations

- (a) Collect particle statistical data from microstructure observations
- (b) Generate particle location & size realization, ~10,000 particles/realization, and randomly place first-phase realization inside
- (c) Keep only particles intersecting first-phase realization

\*Bozek et al., MSMSE (2008)

- (d) Filter & insert particles that crack
  - fracture mechanics-based MSFC incubation filter\*
  - particle inclusion algorithm for inserting particles into first-phase realization



\*\*Harlow et al., MM Trans A (2006)



#### Automated microstructure meshing

- Input: 3D two-phase model, global maximum element size, & size gradation factors
- Local element size seeds assigned before meshing
  - conform to small geometrical features
  - smooth gradation via octree, quadtree, & rangetree algorithms
- Mesh conforms to exterior & interior surfaces
- Advancing front surface & volume meshing\*
- Parallel volume meshing: 1+ grains/processor



two-phase microstructure exterior surfaces grain from microstructure interior surfaces, *i.e.* grain boundaries



# Crack insertion & propagation

- FRANC3D/NG: arbitrarily non-planar, geometric crack representation
  - direction & rate vary along crack front
  - deflection/arrest
    allowed at interfaces
- Adaptive remeshing local to cracks
- Material state mapping
- Plug-compatible physics-based routines determine crack front points





# Material state mapping

- Applies 3D equivalent of mapping routine from FRAN2D/L\*
- Example:  $u_x = 0$  on  $x_{min}$  face  $u_x = L_x * \varepsilon_x(t)$  on  $x_{max}$  face  $u_y = 0$  on  $y_{max}$  face  $u_z = 0$  on  $y_{min}$  and crack faces traction-free on  $y_{min}$  and crack faces







#### Presentation outline

- I. Microstructure geometry modeling
  - A. First-phase realizations
  - B. Two-phase realizations
  - C. Automated microstructure meshing
  - D. Microstructurally small fatigue cracks (MSFC's)
    - 1. Explicit geometry representation
    - 2. Material state mapping

#### II. MSFC propagation simulation

- A. MSFC propagation terminology
- B. Intragranular propagation
  - 1. Direction criteria: Stage I and Stage II
  - 2. Rate criterion
- III. Ongoing work & conclusions



# MSFC propagation terminology

- (a) Incubation: cracking of Fe-bearing second-phase particles
- (b) Matrix crack nucleation: extension from particle into neighboring grain(s)
- (c) Intragranular propagation: within grains, not near material interfaces
- (d) Transgranular propagation: near & across grain boundaries
- (e) Stage I propagation: slip-dominated, along crystallographic planes
- (f) Stage II propagation: maximum tensile stress dominated, e.g. mode I





## Intragranular propagation direction

• Stage I: criteria from nucleation study\*

 direction of maximum slip-based damage,  $D_i$ , e.g.:

$$D_I = max(\gamma^j)$$
  
where  $\gamma^j = slip$  on system j

- grain orientation dependent
- non-local  $D_i$  calculation
- Stage II: max. tensile stress criterion
- Example from nucleation study:
  - 5 cycles, R = 0.1,  $\varepsilon_{max,RD} = 0.01$
  - convergence at O(a/50) crack tip element sizes
  - orientations with 2+ high Schmid factors have higher  $D_i$ , along 2+ slip systems (right plot)

is propagation immediately Stage II?







 $D_1$  contour plots for 2 grain orientations\*



Intragranular propagation rate

• Crack tip displacement, *CTD*, criterion, *e.g.*\*:

$$\frac{da}{dN} = G(\Delta CTD - \Delta CTD_{TH})$$

- $\triangle CTD_{TH}$  is displacement threshold
- G unknown: requires calibration
- $\triangle CTD$  explicitly calculated
  - vector magnitude: combined opening & sliding displacements
  - measured behind crack front
- *CTD* convergence study:
  - monotonic load,  $\varepsilon_{max,RD} = 0.01$
  - convergence at O(r/50) crack tip element sizes
  - orientation dependent
  - opening displacement O(10¹) greater
    than sliding displacement





# Ongoing work



14



### **Conclusions**

Introduced and developed significant components of a geometric approach to stochastically modeling fatigue crack propagation at the microstructural length scale

- Microstructure geometry modeling
  - algorithms for generating two-phase realizations
    - statistically representative of microstructural observations
    - contain only particles predicted to crack from fracture mechanics criteria
  - fully automated procedure for generating geometry-conforming meshes
  - crack insertion/propagation w/ adaptive remeshing & material state mapping
- Simulation of microstructurally small fatigue crack propagation
  - criteria implemented for intragranular crack growth direction and rate
    - slip-based damage metrics for direction and △CTD for rate are non-locally calculated
    - FE convergence requires crack tip element sizes O(a/50)
    - all criteria show significant grain orientation dependence



# Acknowledgements

- United States Defense Advanced Research Projects Agency under contract numbers HR0011-04-C-0003 and HR0011-09-0002
- Northrop Grumman Corporation, especially Drs. Elias Anagnostou and John Papazian
- Computational Science Graduate Fellowship Program of the Office of Science and National Nuclear Security Administration in the United States Department of Energy under contract number DE-FG02-97ER25308
- United States National Aeronautics and Space Administration through the Constellation University Institutes Program grant number NCC3-994
- Dr. Anthony Rollett and Stephen Sintay at Carnegie Mellon University
- Drs. Antoinette Maniatty and David Littlewood at Rensselaer Polytechnic Institute
- Dr. Gerd Heber of the Cornell Fracture Group





