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Need for probabilistic da/dN predictions accounting 
for inherently stochastic processes at the µscale
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Geometric approach to probabilistically 
predicting da/dN at the µscale
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Presentation outline
I. Microstructure geometry modeling

A. First-phase realizations
B. Two-phase realizations
C. Automated microstructure meshing
D. Microstructurally small fatigue cracks (MSFC’s)

1. Explicit geometry representation
2. Material state mapping

II. MSFC propagation simulation
A. MSFC propagation terminology
B. Intragranular propagation

1. Direction criteria: Stage I and Stage II
2. Rate criterion

III. Ongoing work & conclusions
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First-phase realizations

(1) randomly generate statistically accurate grain sizes and orientations*

(2) digitally replicate morphology*: (a) Voronoi and stretch, (b) snap-
to-grid and extrusion, or (c) voxellation and marching cubes

*in collaboration with Rollett, Lee and Sintay, CMU
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Two-phase realizations

particle radii statistics**
(a) (b) (c) (d)

6

(a) Collect particle statistical data from microstructure observations

cracked 
particle

150 µm cube

RD TD

*Bozek et al., MSMSE (2008) **Harlow et al., MM Trans A (2006)

(b) Generate particle location & size realization, ~10,000 particles/realization, and 
randomly place first-phase realization inside

(c) Keep only particles intersecting first-phase realization
(d) Filter & insert particles that crack

• fracture mechanics-based MSFC incubation filter*
• particle inclusion algorithm for inserting particles into first-phase realization



Automated microstructure meshing
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exterior surfaces

interior surfaces,
i.e. grain boundaries

element quality shape 
measure** histogram 
of a typical grain mesh

FE solver 
convergence

two-phase 
microstructure

grain from 
microstructure

• Input: 3D two-phase model, global maximum 
element size, & size gradation factors

• Local element size seeds assigned before meshing
– conform to small geometrical features
– smooth gradation via octree, quadtree, & 

rangetree algorithms
• Mesh conforms to exterior & interior surfaces
• Advancing front surface & volume meshing*
• Parallel volume meshing: 1+ grains/processor

*Cavalcante-Neto et al., CNME (2005) **Freitag and Knupp, 8th Mesh Roundtable (1999)
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Crack insertion & propagation
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• FRANC3D/NG: 
arbitrarily non-planar, 
geometric crack 
representation
– direction & rate vary 

along crack front
– deflection/arrest 

allowed at interfaces
• Adaptive remeshing 

local to cracks
• Material state 

mapping
• Plug-compatible 

physics-based routines 
determine crack front 
points



Material state mapping

insert crack apply (dN1 + dN2)

apply dN1 insert crack apply dN2map state at dN1

accumulated plastic slip after (dN1 + dN2)

• Applies 3D equivalent of mapping routine from FRAN2D/L*
• Example:   ux = 0 on xmin face    ux = Lx*εx(t) on xmax face 

uy = 0 on ymax face    uz = 0 on zmin & zmax faces 
traction-free on ymin and crack faces

εx(t)

t

1.0

0.1

dN1 dN2

single FCC 
crystal ux

RD, x

ND, z

TD, 
y

*James, KSU Ph.D. (1998)
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MSFC propagation terminology
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(a)  Incubation: cracking of Fe-bearing 
second-phase particles

(b) Matrix crack nucleation: extension 
from particle into neighboring grain(s)

(c) Intragranular propagation: within 
grains, not near material interfaces

(d) Transgranular propagation: near & 
across grain boundaries

(e) Stage I propagation: slip-dominated, 
along crystallographic planes

(f) Stage II propagation: maximum 
tensile stress dominated, e.g. mode I

(a)

(b)

(c) (d)

(e) ?

(f) ?



Intragranular propagation direction

12

• Stage I: criteria from nucleation study*
– direction of maximum slip-based 

damage, Di, e.g.:
D1 = max(γ j)
where γ j = slip on system j

• grain orientation dependent
• non-local Di calculation

• Stage II: max. tensile stress criterion
• Example from nucleation study:

– 5 cycles, R = 0.1, εmax,RD = 0.01
– convergence at O(a/50) crack tip 

element sizes
– orientations with 2+ high Schmid 

factors have higher Di, along 2+ slip 
systems (right plot)

is propagation immediately Stage II?

RD

ND

TD

D1 contour plots for 2 grain orientations*

*from Hochhalter et al., MSMSE (to appear 2009)

crack 
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Intragranular propagation rate
• Crack tip displacement, CTD, criterion, 

e.g.*:

– ∆CTDTH is displacement threshhold
– G unknown: requires calibration
– ∆CTD explicitly calculated

• vector magnitude: combined 
opening & sliding displacements

• measured behind crack front
• CTD convergence study:

– monotonic load, εmax,RD = 0.01
– convergence at O(r/50) crack tip 

element sizes
– orientation dependent
– opening displacement O(101) greater 

than sliding displacement

( )THCTDCTDG
dN
da

∆−∆=

*Xue et al., EFM (2007)

a

Semi-circular crack 
in single crystal

A

B

A Bposition along arc A-B, r = 0.9a
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L

r

L
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Ongoing work
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Conclusions 
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Introduced and developed significant components of a
geometric approach to stochastically modeling fatigue crack
propagation at the microstructural length scale
• Microstructure geometry modeling

– algorithms for generating two-phase realizations
• statistically representative of microstructural observations
• contain only particles predicted to crack from fracture mechanics criteria

– fully automated procedure for generating geometry-conforming meshes
– crack insertion/propagation w/ adaptive remeshing & material state mapping

• Simulation of microstructurally small fatigue crack propagation
– criteria implemented for intragranular crack growth direction and rate

• slip-based damage metrics for direction and ∆CTD for rate are non-locally 
calculated

• FE convergence requires crack tip element sizes O(a/50)
• all criteria show significant grain orientation dependence
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