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  The National Aeronautics and Space Administration (NASA) uses a closed-cell 

polyurethane foam to insulate the external tank (ET) which contains the liquid oxygen 

and hydrogen for the Space Shuttle main engines.  This is a type of spray-on foam 

insulation (SOFI), similar to the material used to insulate attics in residential 

construction.  In February of 2003, the Shuttle Columbia suffered a catastrophic accident 

during re-entry.  Debris from the ET impacting the Shuttle’s thermal protection tiles 

during liftoff is believed to have caused the Space Shuttle Columbia failure during re-

entry.   

NASA engineers are very interested in understanding the processes that govern the 

breakup/fracture of this complex material from the shuttle ET.  The foam is anisotropic in 

nature and the required stress and fracture mechanics analysis must include the effects of 

the direction dependence on material properties.  Over smooth, flat areas of the ET the 

foam can be sprayed down in a very uniform fashion.  However, near bolts and fitting 



xiii 

points it is possible for voids and other defects to be present after the foam is applied.  

Also, the orientation of the foam, as it rises from non-uniform surfaces, can be 

significantly different from the orientation over typical acreage sprays.  NASA believes 

that air present in these small voids is liquefied and then turned into a gas during liftoff.  

While the Shuttle is ascending to space, the pressure in these cavities can become large 

enough to force a subsurface crack toward the exterior of the tank, thus freeing portions 

of foam insulation. 

 As a first step toward understanding the fracture mechanics of this complex 

material, a general theoretical and numerical framework is presented for computing stress 

intensity factors (SIFs), under mixed-mode loading conditions, taking into account the 

material anisotropy.  The effects of material orientation and mode mixity on the 

anisotropic SIF solution are analyzed.  Crack turning predictions under mixed mode 

loading are presented.  Furthermore, the influence of temperature gradients on the SIF 

solution is studied, in view of the thermal gradient present through the foam thickness on 

the ET.  The results presented represent a quantitative basis for evaluating the strength 

and fracture properties of anisotropic BX-265 foam insulation material. 

 
 

 



 

1 

CHAPTER 1 
BACKGROUND 

Problem Motivation 

On February 1st, 2003, the Space Shuttle Columbia suffered a catastrophic failure 

during re-entry.  NASA has conducted an exhaustive investigation of the failure and the 

consensus now is the breakup was caused by a segment of BX-265 foam insulation, 

roughly the size of a suitcase, striking the wing during liftoff.  The foam impact, in prior 

Shuttle launches, has been known to cause impact damage to the thermal protection tiles, 

but was not considered to be a serious problem until the Columbia disaster.  The damage 

to the thermal protection tiles on the leading edge of the wing is thought to have allowed 

gases to penetrate the wing during re-entry, triggering a cascading series of catastrophic 

events that led to the loss of the Shuttle.  

It is believed that when the foam insulation is applied to the external tank (ET) that 

voids are created in certain areas where geometric discontinuities such as bolts, flanges, 

and fittings are encountered.   Since the tank is filled with liquid oxygen and hydrogen 

the foam is exposed to cryogenic temperatures at the ET’s surface.  The air inside these 

voids can be liquefied and nitrogen can condense into these small cavities.  During liftoff 

the outer surface of the foam is exposed to aerodynamic heating.   This heating raises the 

temperature of the liquid nitrogen, turning it into a gas.  The pressure difference 

associated with the formation of the gas can cause pieces of foam to be blown out during 

liftoff( see Figure1-1). 
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Figure1-1.  Foam loss during Shuttle ascension 

Program Scope and Focus 

Prior to the Columbia disaster, the foam that insulates the tank was not understood 

at a fundamental level.  Quantities like the elastic moduli, and thermal properties such as 

coefficient of thermal expansion are needed for a meaningful failure analysis of this 

material.  This prompted NASA to initiate an intensive testing program to ascertain 

various properties at cryogenic, room, and elevated temperatures.  The pictures in Figure 

1-1 show the foam breaking off areas near fitting points.  At these locations, insulation is 

sprayed around various parts, such as bolts, and it is here that the foam’s orientation, 

relative to the tank, can change by quite a bit.  For typical acreage sprays, there is very 

little difference between the local coordinate axes of the foam and those of the substrate 

(Figure 1-2). 

Pictures of the Shuttle during liftoff, such as those shown in Figure 1-1, show us 

that large pieces of foam are not really breaking away over smooth, open, areas of the 

tank.  The problem seems to be confined to areas where the foam is applied over fitting 

points, bolts, and other areas where various parts can protrude the surface of the ET.    
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Figure 1-2.  Spray-on foam insulation (SOFI) 

Right away we notice that two potential problems come to mind at these locations: it is 

possible for voids to be created when the foam is being laid down, and the orientation of 

the foam can change by a large degree.  

The material tests conducted by NASA have shown that this type of foam is brittle.  

Perhaps the best way to analyze sharp, crack-like, defects for this sort of material is 

through linear elastic fracture mechanics (LEFM).  For isotropic materials, the near-tip 

stresses are completely characterized by K—the stress intensity factor (SIF). The 

analytical K-solutions for anisotropic materials take a similar form, but have additional 

terms that come from the various elastic moduli.  The formulations of near-tip stresses for 

isotropic materials are well established and are now incorporated in many finite element 

(FE) software packages.  Some K-solutions for certain kinds of direction-dependent 

materials started appearing in the 1960s and more generalized solutions were presented in 

the 1980s.  Since many engineering materials are not isotropic (such as rolled aluminum 
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in aircraft fuselages and single-crystal superalloys used in high performance gas turbine 

engines), more attention is being paid toward the implementation of anisotropic K-

solutions in various FE schemes.  Still, many of the most popular FE software packages 

do not allow accurate computations of SIFs for simulations involving anisotropic 

materials. 

Foams are inherently anisotropic, and NASA, after extensive testing, has classified 

this material as transversely isotropic.  Such materials also have fracture characteristics 

that are direction dependent and both of these traits must be accounted for in the 

analytical and numerical analyses.  Although anisotropic K-solutions are not readily 

available, the Cornell Fracture Group has developed a software package, FRANC3D, that 

simplifies the meshing process necessary for FE modeling of crack-like defects in elastic 

solids and also computes a K-solution for anisotropic materials.  Concurrently, an 

alternative method for computing the SIFs, based on the work of Hoenig (1982), for 

anisotropic materials has been employed and extended to account for thermal stresses and 

strains.    

It is hoped that the present study will enhance NASA’s understanding of this 

material, since the K-solutions used in this analysis account for both the direction-

dependent properties and the impact of thermal stresses and strains.  The following points 

summarize the scope of this study in a broad sense: 

1. Through the use of the middle tension, M(T), specimen and the FE method a 
systematic rotation of material properties and its impact on the K-solution is 
examined 

2. The impact of mode mixity on the K-solution is studied 

3. Crack turning predictions that take into account both the anisotropic stiffness and 
fracture properties are presented 



5 

 

4. The effect of a thermal gradient through the M(T) specimen and its impact on the 
K-solution are presented 
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CHAPTER 2 
FOAM TESTING AND MATERIAL CLASSIFICATION 

Cellular Solid Background Information 

Cellular solids are generally comprised into two sets of structural categories: 1) 

honeycomb layouts where the microstructure is comprised of two-dimensional arrays of 

polygons that fill a planar area and 2) foams, the three-dimensional counterpart to 

honeycombs where the cells take the form of polyhedra.  Within Gibson and Ashby’s 

(1988) definitive text on cellular solids, we see how many types of materials can be 

foamed: metals, glasses, and ceramics can be fabricated into cells that take on a variety of 

shapes and sizes.  Among the most common types of foam are polymers which are used 

for many applications including insulation for residential homes or disposable coffee 

cups.  Polymer foams are usually very light and they are popular in industries where 

weight is of prime importance, such as in the aerospace industry.   

Foams are typically made by bubbling a gas into the liquid monomer or hot 

polymer.  The gas can be introduced mechanically by stirring or by using a blowing 

agent.  Physical blowing agents are normally gases like nitrogen or carbon dioxide.  

Chemical blowing agents are special additives that decompose when they are heated or 

react in such a fashion where gas is released.  The bubbles grow and eventually settle and 

then, as the liquid is cooling down, become solid. 

In general, polymer foams have considerably lower strength and density than solid 

metals.  However, their low thermal conductivity coupled with their much lighter weight 
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make them an ideal insulator for the ET.  Table 2-1 (Gibson and Ashby, 1988) lists 

several properties of polymer foams and true solids (solid metals and ceramics). 

Table 2-1.  Properties of solids and polymer foams 

 Density (lb/in3) Conductivity (BTU/hr in F) Young’s modulus (psi) 
Solids 3.6 x 10-2 – 3.6 x 10-1 4.8 x 10-3 – 48   3 – 30 x 106 

Polymer 
foams 

3.6 x 10-4 4.8 x 10-3 3 x 103 

 
Initial Foam Material Testing 

The Columbia disaster forced NASA and all those associated with the application 

of the foam insulation material to the ET to see it in an entirely different light.  Numerous 

tests were conducted at cryogenic, room, and elevated temperatures to ascertain the 

properties of this material.  In addition to standard torsion and tension tests to obtain the 

elastic moduli, various tests were performed to evaluate the failure characteristics, such 

as the plane strain fracture toughness, KIc.  While these tests are an important first step in 

understanding how the foam behaves on a fundamental level, NASA also took extra steps 

to examine how the foam sheds from the tank through a specialized test covered in a later 

section. 

Determination of Elastic Constants and Material Classification 

Some of the initial work toward understanding the mechanical properties of foams 

took places in the 1960s and 1970s.  Gent and Thomas (1959), and Patel and Finnie 

(1970) among others were among the first to explore the properties of cellular materials.  

The model developed by Gibson and Ashby (1982), however, is perhaps the most widely 

accepted way to analyze the properties of cellular solids.  Their analysis is rooted in a 

unit cell comprised of a network of interconnected struts (Figure 2-1)  The equations that 

arise from this mathematical treatment are in terms of the strut dimensions, which in turn  
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Figure 2-1:  Idealized foam microstructure 

allow some material properties to be related to the relative density.  The relative density 

is the density of cellular material, ρ*, divided by the density of the solid from which the 

cell walls are made, ρs.   

Generally, foams can be divided into two main categories: those with open or 

closed cells.  By closed we mean materials where each cell is partitioned from its 

neighbor by membrane-like faces.  Within open-celled structures the individual members, 

struts say, are individually connected. With Gibson and Ashby’s (1982) model, many of 

the equations that determine various properties, such as the elastic moduli or the fracture 

toughness are derived considering the configuration of the cell walls.   

Understanding the mechanical and metallurgical aspects of these struts at a 

microscopic level is very important.  After all, it is these struts that transmit the applied 

mechanical loads and transfer heat energy.  But from a practical standpoint, models that 

contain these microscopic parameters are not very useful to the engineering community.  

The engineer may not have access to the equipment and facilities necessary to measure 
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things like cell wall thickness.  Generally, the analyst, or engineer, may only be privy to a 

quantity like the relative density.  This parameter is one of the most important, and 

useful, concepts that help define and understand the properties of cellular materials.  The 

relative density can be related to the dimensions of the cell walls.  For honeycombs we 

have 

1
*

s

tC
l

ρ
ρ

=           (2-1) 

where t is the cell wall thickness and the l is the edge-length.  For open-cell foams  

2

2
*

s

tC
l

ρ
ρ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

          (2-2) 

Finally, for the foams of the closed-cell variety we have 

3
*

s

tC
l

ρ
ρ

=           (2-3) 

The C terms are numerical constants that depend on the cell shape, normally taking a 

value of unity. 

As mentioned beforehand, certain open-celled foams can be modeled as a network 

of beams.  Using an idealized array of connected beams, the theory in many solid 

mechanics texts such as Timoshenko and Goodier (1982) is adequate to determine the 

deflections, strains, and stresses.  It can be shown that the Young’s modulus for the open-

celled foam is given by 

1
4* sC E IE

l
σ
ε

= =          (2-4) 

where E* is the modulus of the foam material.  The relative density is related to the 

dimensions, t and l as shown in (2-2).  The second moment of the area, I, can also be 

related to the cell wall dimensions 
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4I t∝            (2-5) 

Now (2-4) can be re-written as 

2

1
* *

s s

E C
E

ρ
ρ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
         (2-6) 

Using the same reasoning, we can write down the relationship for the shear moduli 

2

2
* *

s s

C
E
μ ρ

ρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

         (2-7) 

Lastly, we need ν*, the Poisson ratio, which is defined as the ratio between the lateral and 

axial strains.  The strains are proportional to the bending deflection and their ratio is 

constant.  Thus, ν* depends only on the cell wall geometry.  We can show this for 

isotropic foams where μs, the shear modulus is  

( )2 1s
Eμ
ν

=
+

          (2-8) 

Using (2-8) along with (2-6) and (2-7) we have 

1
3

2

* 1
2
C C
C

ν = − =          (2-9) 

The above analysis is for open-celled foams.  When examining closed-cell foams, 

the derivations are more complex because most foams are made from a liquid and surface 

tension draws the material to the edges which might leave only thin membrane across the 

cell.  For sufficiently thin membranes, the open-celled formulas can be applied.  But if an 

appreciable quantity of foam is present in these membranes, the amount, or fraction, of 

this material contributes to the stiffness.  There are three potential contributions that sum 

to the total stiffness of a closed-cell material.  The aforementioned cell walls make a 

contribution when they are stretched. The second contribution is present due to a fluid, 
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usually air, trapped within the cells, and finally the cell walls, and beams, can also be 

bent when a load is applied. 

The contribution from the stretching is derived by considering how the applied load 

bends and stretches the cell face.  The cell edge bending is proportional to ½Sδ2 where S 

is the stiffness of the cell edge, and S∝EsI/l3, and δ is the displacement that arises from 

the applied load.  The contribution from the stretching of the face is proportional to 

½Esε2Vf.  The Vf term is the volume of solid in the cell face and ε ∝ δ/l and Vf ∝ l2tf.  

The thickness of the edges and faces are denoted as te and tf, respectively.  In the linear-

elastic regime, we can define the work done by the applied force as 

2
2

3

1
2

s
s f

E IF E l t
l l

α δ δδ β ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

       (2-10) 

Equation (2-10) can be re-written when we note that I∝ t4
e and E* ∝ (F/l2)/(δ/l) which 

yields 

4

4

* ' ' fe

s

ttE
E l l

α β= +          (2-11) 

For many foams the edge and face thickness is related to the relative density by the 

following empirical relations 

( )

1/ 2
1/ 2

*1.4 1

*0.93

f

s

e

s

t
l

t
l

ρφ
ρ

ρφ
ρ

= −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

         (2-12) 

If we substitute (2-12) into (2-11) we obtain the ratio of the elastic moduli in terms of the 

relative density and volume fraction of material in the cell edges is φ  
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( )2
1 1

* * *' 1
s s s

E C C
E

ρ ρφ φ
ρ ρ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
       (2-13) 

where α, β, α’, β’, C1, and C1’are all constants of proportionality.  The above equations 

take care of the contribution from the stretching of the cell walls.  The next contribution 

comes from accounting for the fluid trapped in the cell walls, E*g.  From Gent and 

Thomas (1963) we have 

( )0 1 2 *
*

*1
g

s

p
E

ν
ρ
ρ

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

         (2-14) 

where p0 is the initial gas pressure.  Gibson and Ashby (1988) note that if this pressure 

happens to be equal to the atmospheric pressure, this contribution is small.  Lastly, shear 

modulus for the closed-cell foam is shown below 

( )2
2 2

* * *' 1
s s s

G C C
E

ρ ρφ φ
ρ ρ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
       (2-15) 

Finally the last contribution to consider comes from the bending on the cell struts, and 

that analysis is identical to the open-celled formulation presented earlier. 

We note that the above relations are for foams where the cell walls are equiaxed.  

Most man-made foams are anisotropic.  When this particular foam is sprayed down, 

foaming agents cause it to rise and the cells are stretched in the rise direction.  Cell shape, 

then, can significantly impact the material properties. The shape anisotropy ratio, R, is 

1
12

2

1
13

3

LR
L
LR
L

=

=
          (2-16) 
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where 1L , 2L , and, 3L  are the lengths of principal cell dimensions and 1L  is the largest of 

the three.  Following a similar analysis for the bending stresses within the beams for the 

isotropic lattice Gibson and Ashby (1988) go onto define a quantity called the Young’s 

modulus anisotropy ratio for open-celled foams as 

2
3

3
1

* 2
* (1 (1/ ) )

E R
E R

=
+

         (2-17) 

For closed cells an additional term ( ) 21
1 (1/ )

R
R

φ−
+

 appears in (2-17).  For the 

anisotropic shear modulus, we have 

31

12

* 2
* 1

G
G R

=
+

          (2-18) 

The Poisson ratio is once again the ratio of lateral and normal strains and, just like in the 

equiaxed case, is independent of the relative density.  As such this elastic constant is 

dependent solely on the cell geometry. Unfortunately, for the anisotropic foams, 

employing the same type of dimensional analysis used to determine the elastic moduli for 

the Poisson ratio will not offer any insight into its dependence on cell wall geometry and 

Gibson and Ashby (1988) do not discuss this in their text. 

So there appear to be two ways to try and determine the properties of the foam 

insulation material.  The properties can be estimated using the relative density and shape 

anisotropy ratio or they can be experimentally evaluated.  The BX-265 foam contains 

closed cells, so the equations presented earlier for this particular cell wall geometry along 

with corrections necessary to account for the anisotropy could be utilized for evaluating 

various material properties in terms of the relative density.   
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Evaluating the all-important relative density, though, may not be as straightforward 

as it seems.  While it is not difficult to measure the density of the foamed material (one 

simply weighs the sample and divide it by the measured volume), getting a handle on the 

un-foamed density for this particular kind of polyurethane foam is not so simple unless 

the exact same foam is available in the literature somewhere.  Also, when NASA was 

preparing various foam test panels (from which the test specimens are machined) they 

determined the density could vary within the specimen.  Also, there are several ways in 

which the insulation can be sprayed down.  The foam can be applied via a mechanical 

process where a machine sprays it down, or it is laid down by hand using special 

equipment that delivers the insulation to the testing surface (normally an aluminum 

plate).   

Thus, since the density could change throughout the test panel, and even vary 

depending on the process by which it is sprayed, NASA developed a test program where 

a vast database of information was to be established for this particular foam material.  It 

was decided that standard test procedures for evaluating both elastic properties and 

fracture response were to be employed, instead of estimating the properties based on 

relations that require the relative density to be known beforehand.   

Figures 2-2 and 2-3 display some of the various test specimens used in various 

tension and torsion tests.  A summary of typical stress-strain data is shown in Figure 2-4.  

Within this chart the results of several tests performed with different foam orientations 

(denoted as local rise, spray, and axial) at a few temperatures (RT denotes room 

temperature and LN2 is the temperature of liquid nitrogen).   
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Figure 2-2.  Square specimen tensile test used to determine the Poisson ratio 

As expected the colder the temperature, the more ‘stiff’ the foam becomes and in general 

the foam fractures with little deformation.  It should be pointed out that the foam is not a 

material that behaves exactly like a generic isotropic steel alloy.  Most engineering 

 

Figure 2-3.  Foam test specimens 
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Figure 2-4.  Summary of stress-strain data † 

metals, when placed in a uniaxial tension test, have a linear relationship between stress 

and strain up until the yield point.  Cellular materials generally have a non-linear 

relationship between stress and strain and the constitutive relations defined in this chapter 

assume that this material has a linear stress strain relationship because a model that 

accurately describes the response for foam has not yet been developed.   

The aforementioned tension and torsion tests have led NASA to classify the foam 

as a transversely isotropic material.  These materials are sometimes called hexagonal 

materials and five independent elastic constants relate the stresses to the strains in the 

constitutive matrix.  The 11-22 plane in Figure 2-5 is a plane of isotropy.   

                                                 
† Source:  personal communication, Doug Wells (MSFC) 
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Figure 2-5.  Coordinate system for the transversely isotropic material  

Using the coordinate axes from Figure 2-4 we can define the constitutive relations for a 

transversely isotropic material.  The Young’s moduli in the 11 and 22 directions are 

defined as being equal as are the shear moduli in the 33, or rise, direction.  The other 

shear modulus, G12, is determined through a relation with E11 and ν12: G12 = 2(1+ ν12)/E11.   

Table 2-1 lists the room temperature values of the elastic constants for the orientation 

shown in Figure 2-5.   

Since one of the objectives of this study is to analyze the effect of temperature, or 

thermal loads, on the K-solution the material properties at various temperatures are 

needed for a meaningful analysis.  NASA evaluated the foam’s elastic moduli, thermal 

conductivity, and coefficient of thermal expansion.   
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where the five independent elastic constants are 

33 

22 

11 
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         (2-20) 

Table 2-1.  Measured material property values from experiment 
E11 = 950 psi ν12 = 0.45 G12 = 328 psi 
E22 = 950 psi ν31 = 0.3 G23 = 231 psi 
E33 = 2400 psi ν13 = 0.3 G31 = 231 psi
 

These values are plotted in Figures 2-6 through 2-9.  The tests performed by NASA 

indicated that the Poisson ratios did not vary substantially with temperature.  As of this 

writing, only one value for k, the thermal conductivity, is available.  It is possible for that 

value to vary with direction as well as temperature.  It will be assumed, however, that k is 

‘isotropic,’ or has no direction dependency. 
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Figure 2-6.  Young’s moduli vs. temperature† 

                                                 
†Source:  personal communication, Doug Wells (MSFC) 
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Figure 2-7.  Shear moduli vs. temperature† 
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Figure 2-8.  Coefficient of thermal expansion vs. temperature† 

                                                 
 

†Source:  personal communication, Doug Wells (MSFC) 
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Figure 2-9.  Thermal conductivity vs. temperature† 

Fracture Testing for the BX-265 Foam Material 

While many foam materials do not exhibit linear-elastic response before yielding, 

brittle foams normally exhibit linear-elastic behavior (while in tension) up until fracture 

takes place.  Thus, we would like to use LEFM concepts to compute the near-tip stresses.  

These analytical expressions assume that we are dealing with a continuum.  So if the 

crack is very small, cell size could influence these computations.  Brittle fracture of 

foams has been studied by Fowlkes (1974), McIntyre and Anderton (1978), Morgan et al. 

(1981), Maiti et al. (1984), and Huang and Gibson (1991) among others.  Perhaps the 

most widely accepted theory for the brittle facture of foam is the Maiti et al. (1984) 

study. They present a relation to compute the toughness for brittle foams as 

( ) ( )1/ 2 3/ 2
8 * /c fs sKI C lσ π ρ ρ=        (2-21) 
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where C8 is a constant of proportionality and σfs is the failure strength of the struts.  

Equation (2-21) can also be re-written as  

( )3/ 2
8' * /c Cs sKI C KI ρ ρ=         (2-22) 

where KICs is the toughness of the solid material.   Equation (2-22) assumes that KICs is 

proportional to σfsl1/2 and once more the desired property is related to the relative density. 

The concern, now, is at what length scale is such an equation valid.   

Huang and Gibson (1991) analyze the fracture toughness of brittle honeycombs.  

The primary aim of their paper is to examine the effect of short cracks and determine 

some sort of correction factor for (2-21).   They go on to show that cell size does indeed 

impact the fracture toughness calculations. Using fractographic analysis, Brezny and 

Green (1991) study short cracks in oxidized carbon foams.  Their results dovetail with 

Huang and Gibson’s (1991) in that cell size can influence the fracture response.   

However, in both studies short cracks are used in the various experiments.  By 

short, we mean crack lengths less than an order of magnitude greater than the average cell 

size.  But in Huang and Gibson’s (1991) paper, the well-known relations based on 

continuum assumptions seem to be valid as long as the crack length is an order of 

magnitude larger than the cell size.  Thus, if one is considering cracks much greater than 

the size of the cell lattice, it seams reasonable to model the foam as a continuum.  

To that end NASA conducted numerous single-edge bending SEN(B), compact 

tension C(T), and middle tension M(T) tests to examine how the foam fractures under 

load and used the regular, continuum-based relations to determine fracture properties, 

such as the plane strain toughness.  Pictures of these test specimens are shown in Figure 

2-10.  Since this material is anisotropic, each time the fracture toughness is calculated, 
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the material’s orientation is supposed to be reported along with it.  Figure 2-11 

summarizes some of the tested geometries at various temperatures (left and right sides of 

the vertical lines), for a few orientations, denoted by the labels along the bottommost 

horizontal axis. 

              

Figure 2-10.  From left to right: M(T), C(T), and SNE(B) fracture test specimens 

While NASA utilized many geometries to test the fracture toughness, the C(T) test 

was the most extensively tested specimen used to estimate a toughness.  The plane strain 

fracture toughness is usually obtained with slow loading rates (Barsom and Rolfe, 1999).  

By plane strain, we mean thick plates, or test specimens, with deep cracks.  The foam is 

brittle and fracture is sudden with little or no stable crack growth.  Wells (1966) 

suggested that the fracture behavior near the crack tip can be characterized by crack tip 

opening displacement (CTOD).  He showed that CTOD is analogous to the crack 

extension force (sometimes referred to as Gc in the literature) and CTOD could be related 

to the plain strain fracture toughness-KIc. 

If the material is brittle and the subsequent load vs crack mouth opening 

displacement (CMOD) curve (Figure 2-12) is linear-elastic and the C(T) specimen meets 
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the standards mandated by the ASTM, KIc can be calculated from this test method and 

this approach is that NASA used to calculate the fracture toughness for the foam.  In 

order to determine KIc, a preliminary fracture toughness, KQ, is determined by the 

following relationship (Anderson, 1991). 

Where PQ (Figure 2-13) is maximum load applied to the C(T) specimen before 

failure, B is the specimen thickness, W is the width of the specimen measured from the 

centerline of the pin holes to the rear of the specimen, and f(a/W) is a dimensionless 

polynomial function.  The ASTM E399 standard denotes which function to use 

depending on what specimen one is using.  If the a/W ratio and B (thickness) are correct 

per ASTM procedure and as long as Pmax is ≤ 1.10PQ then KQ = KIc. 

 

Figure 2-11.  Summary K-values for various fracture specimens 
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K f a W

B W
=          (2-5) 

 

Figure 2-12.  Clip gauge on C(T) specimen used to measure CMOD 

Additional Testing: Divot Test Specimens 

While NASA was conducting tests to evaluate the material properties at various 

temperatures, additional experiments were devised to examine how and why the foam 

becomes detached from the tank.  Gibson and Ashby (1988) discuss the design of 

sandwich panels with foam cores.  These types of structural members are normally 

comprised of two, stiff, skins separated by a lightweight core.  These parts are utilized 

heavily by the aircraft industry, particularly in applications where resistance to bending 

and buckling loads are important, such as helicopter rotor blades.  One mode of failure 

for these types of structural members is decohesion of the adhesive bond between the 

skin and the core. 

Δ CMOD 

Clip 
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Figure 2-13.  Typical load vs CMOD curve for a brittle material  

Often the epoxy bond is stronger than the core material itself.  So if the interface 

between the skin and core is defect-free, delamination is usually not a concern.  The 

situation changes if there are defects within the interface, however.  This type of analysis 

is complicated by the difference in elastic constants between skin, adhesives and core.  

The delamination described by Gibson and Ashby can be likened to ‘weakening’ the 

bond between the core and the outer skin.  When the strength of the bond becomes too 

weak, the foam core and skin can peal apart.  The failure mode that NASA is 

encountering, however, is more of an explosive and sudden ‘blowout’ of foam from the 

ET. 

Since the foam loss seems to be the greatest near areas where the surface of the 

tank is somewhat uneven (from bolts and fittings), NASA believes that voids created 

when the foam is first being sprayed down are the primary reason why the foam is able to 

break off.  These are indeed defects between the ET, or skin, and the foam, or core 

material.  To model this phenomenon, NASA devised an experiment to examine how 

Δ CMOD 

Load, P 

Pmax = PQ 
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various voids within foam test panels could contribute to large pieces of foam being 

blown out under certain conditions.  Rectangular test panels like the one shown in Figure 

2-14 are used for the ‘divot testing.’   

 

Figure 2-14.  Divot test panel 

In this experiment a cylindrical bore is machined into the panel.  At the top of that 

bore, a sharp notch is created to simulate a crack, or defect, near this void.  Liquid 

nitrogen is then pumped into the bored hole and a heat flux is applied across the other 

side of the foam panel.  Two-dimensional schematics of this process are shown in Figures 

2-15 and 2-16.   

The applied flux warms the liquid nitrogen and eventually a phase change takes 

place.  The experiment takes place in a thermo-vacuum chamber to simulate the 

environment the foam is exposed to during liftoff.  As the Shuttle ascends to space, the 

atmospheric pressure is dropping, but the gaseous N2 applies pressure on the walls of the 

void and the crack faces.  With enough force, the flaw turns and propagates toward the 

surface. 
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Figure 2-15.  2-D view of divot test 

In Figure 2-17, we see the aftermath of one of these experiments.  A frustum 

shaped piece of foam has been blown out and the crater left behind resembles a ‘divot,’ 

similar to the removal of a small piece of turf after a golf shot has been played.  It is here 

that predicting the crack turning angle could have a practical application.   

 

Figure 2-16.  2-D view of test panel after heat flux has been applied 

For a given void and flaw size, along with the applied tractions, it might be possible to 

calculate this angle, denoted as ωc in Figure 2-16, by calculating near-tip stresses and 

applying a turning theory such as the maximum tangential stress criterion.  The concept 

of the crack turning angle and methods to compute it will be covered in a later chapter.    
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Figure 2-17.  Foam blow out from divot test 

Summary  

The pertinent theory (Gibson and Ashby, 1988) regarding cellular solids is 

presented and various formulas are available depending on what type (open or close-

celled) of foam one is analyzing.  Formulae for anisotropic foams are presented as well.  

The elastic constants, for both isotropic and anisotropic constants can be estimated 

through the relations presented in the early sections of this chapter or via experiment.  

While there is extensive literature available on foams, NASA decided to perform tests to 

evaluate the elastic constants and fracture properties at various temperatures.  This 

enabled NASA to have a large collection of experimental data for several material 

orientations, over a wide range of geometries. 

Once the tests were conducted, determining the fracture properties can be done 

using the well-known empirical relations for standard test specimens.  One of the main 

assumptions behind these equations is that they are to be applied to a continuum.  The 

foam is a porous material and it has been shown that cell size can impact fracture 

properties if one is conducting analyses with short cracks.  However, continuum 
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assumptions are acceptable as long as the crack is an order of magnitude longer than the 

cell length. 

Lastly, additional and highly specialized tests were performed to investigate how 

the foam is able to free itself from the tank.  NASA believes that voids near fittings and 

bolts allow liquefied air to collect in these cavities prior to liftoff.  During liftoff, the air 

rushing over the outside surface of the insulation warms the liquid nitrogen which 

converts it into a gas.  The pressure, while small, appears to be sufficient to drive a crack 

toward the exterior and this seems to account for the foam loss outlined in chapter one. 

An idealized case of this process is examined through the divot test.  These 

experiments entail machining oval or cylindrical-shaped voids into a foam test panel and 

pumping in liquid nitrogen.  The cryogen is heated when a flux is applied to the top part 

of the foam panel.  At the top of the void, a sharp notch is inserted and when the nitrogen 

is turned into a gas, the pressures exerted on the void walls and crack faces are sufficient 

to drive a crack toward the surface.  It is here that a determination of the crack turning 

angle could be of some use to NASA and there a few theories prevalent in the literature 

on this topic.  Most of them require the evaluation of near-tip stresses and/or strains.  

Since this an anisotropic material, the general equations for isotropic materials are not 

applicable in most cases.  In the next chapter a detailed discussion covering linear, 

elastic, anisotropic fracture mechanics is covered and these concepts are applied in 

chapter four when crack turning theory is presented.
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CHAPTER 3 
AN INTRODUCTION TO FRACTURE MECHANICS 

Material Definitions 

For local crack tip calculations there are material definitions, or classifications, that 

need to be defined before moving on with discussions on how to compute near-tip 

stresses for materials that are anisotropic, or have direction-dependent properties.  In 

general, most texts on fracture mechanics focus on materials that are isotropic.  Here the 

constitutive matrix contains three elastic constants, two of which are independent, E and 

ν.  For isotropic materials, there are an infinite number of planes of material symmetry 

and the strains and stresses are related to each other via equation (3-1). 
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  (3-1) 

Many other types of materials can be characterized by the number of planes of 

internal symmetry (Dieter 1976).  Cubic materials, for example, have three independent 

material parameters and nine planes of symmetry.  Materials with three internal planes of 

symmetry are known as orthotropic materials and many engineering metals fall into this 

category, such as rolled aluminum.  A special class of orthotropic materials has a single 

plane of symmetry that is also isotropic.  These are known as transversely isotropic 

materials and the constitutive relations for this material were defined in the previous 
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chapter.  Monoclinic materials possess a single plane of material symmetry, but the 

behavior in that plane is not isotropic. 

Being cognizant of the constitutive relations for the particular material in question 

(be it isotropic or fully anisotropic) is important because many of the initial derivations of 

near-tip stress fields for anisotropic materials tried to take advantage of material 

symmetry to decouple ‘in-plane,’ and ‘out-of-plane’ displacements, which, in turn, makes 

the mathematical formulation a little less complicated. 

Isotropic Fracture Mechanics 

For isotropic materials, the near-tip stress fields have been analyzed by 

Westergaard (1939), Sneddon (1946), Williams (1957), and Irwin (1960) among others.  

These solutions pertain to specific cracked configurations with applied far-field loads and 

are governed by a single parameter, K, the stress intensity factor (Anderson, 1991). 

( , ) ( ) higher order terms
2

σ ω ω
π

= +ij ij
Kr f

r
      (3-1) 

 
 

Figure 3-1.  Coordinate system used in equation (3-1) 

The coordinate system for equation (3-1) is shown in Figure 3-1, where the fij term is a 

trigonometric function.  We note the Greek letter, theta, is normally used to define the 

angle with the horizontal in the polar coordinate system presented above, but theta will be 
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used later on to define the material orientation.  A different variable name is selected to 

avoid confusion.  The key points about (3-1) are that the near-tip stresses have no 

dependence on the elastic constants and the first term is proportional to 1/√r and, 

therefore, the stresses approach infinity as r is made smaller and smaller.  Also, as r 

approaches zero the ‘higher order terms’ in (3-1) get smaller or remain at some finite 

value.  Thus, in many texts and papers the analysis is restricted to small values of r such 

that the higher order terms are neglected.  

There is typically a roman numeral written next to the stress intensity factor to 

denote the mode of loading and Figure 3-2 displays the three modes of deformation. 

   

Figure 3-2.  From left to right:  mode I (opening), mode II (shearing), mode III (tearing) 

While the stresses are proportional to 1/√r, the displacements are related to √r-equation 

(3-2).  
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where κ = 3-4ν for plane strain and κ = (3-ν)/(1+ν) for plane stress and μs is the shear 

modulus. 

Linear Elastic Fracture Mechanics for Anisotropic Materials 

In general, the equations in the previous section cannot be applied to this problem 

directly because the material properties are direction-dependent.  The analytical work 

geared at developing the near-tip stress fields for elastic anisotropic materials has been 

examined by Sih et al. (1965), Bowie and Freese (1972), Barnett and Asaro (1972), Bogy 

(1972), Tupholme (1974), Kuo and Bogy (1974), Rathod (1979), Hoenig (1982),  and 

Dhondt (2002) among other researchers. 

The important work of Sih et al. is one of the most cited references for determining 

the stress fields near the crack tip for anisotropic materials.  Following Westergaard’s use 

of stress functions and complex variables to determine near-tip stresses for isotropic 

materials, Sih et al. use a similar approach for materials with direction-dependent 

properties.  Whenever stress functions are utilized to solve this kind of problem, there is 

normally a corresponding characteristic equation (a detailed explanation of the 

characteristic equation can be found in Appendix A).  For the most general case, the 

order of the characteristic equation is six.  In Sih et al.’s paper the material in question is 

monoclinic and the crack is resting in the symmetry plane.  The constitutive relations for 

monoclinic materials are shown in equation (3-3). 
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This configuration is advantageous because the in-plane and out-of-plane 

displacements become decoupled, which in turn reduces the order of the characteristic 

equation to four.   
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( )31 32 36 33zz xx yy xyS S S Sσ σ σ σ= − + +        (3-5) 

where the elastic constants in compliance form are defined as    

i ij jSε σ=           (3-6)  
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 (3-7) 

The roots μ1, μ2, and μ3 for this particular formulation come from the special case for 

monoclinic materials listed in Appendix A.  

2
11 16 12' ' 'j j jp S S Sμ μ= − +         (3-8) 

12 26 22' ' 'j j jq S S Sμ μ= − +         (3-9) 

Sih et al. enforce a plane strain condition and the reduced compliance matrix becomes 
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3 3

33

i j
ij ij

S S
S S

S
′ = −          (3-10) 

cos sini iQ ω μ ω= +         (3-11) 

The C45 and C44 terms in (3-7) are the elastic constants which are in stiffness form  
 

i ij jCσ ε=      (3-12) 
 
where  
 

1
ij ijC S −=      (3-13) 

 
The aforementioned ‘decoupling’ of the anti-plane displacement is now evident in 

equation (3-7).  The uz displacement does not depend on KI and KII.  This is similar to 

the isotropic case in equation (3-2); the z component of displacement only depends on 

KIII.   

When analyzing the foam problem for NASA, a crack, or defect, can be at any 

orientation relative to the insulation.  In that sense, it does not seem very practical to 

employ the Sih et al. solution unless we know the crack always lies in the symmetry 

plane.  More general solutions, ones that do not require a decoupling of the anti-plane 

displacements, will be used instead.  

The asymptotic solution derived by Hoenig is the one we will adopt to get the near-

tip stress fields.  Materials with virtually any orientation, irrespective of the location of 

the crack front, can be modeled with this method.  Hoenig uses the pioneering work of 

Lekhnitksii (1963) to derive the stresses and displacements given below by using 

complex variables and stress functions to derive a coupled set of differential equations 

whose solution entails determining the roots of the ensuing sixth order characteristic 
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equation.  We notice that K once again arises as a scalar multiplier just as it did for the 

isotropic solution.   
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    (3-14)  

( )31 32 34 35 36 33zz xx yy yz xz xyS S S S S Sσ σ σ σ σ σ= − + + + +     (3-15) 

( )
3

1

1

2 Re cos sini ij jl l j
j

ru m N K ω μ ω
π

−

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑      (3-16) 

Here an important distinction is made between the general case and Sih et al’s 

formulation.  Notice in (3-16) how the mode I-III SIFs are to be summed over all three 

modes of displacement.  Thus, all three components of displacement are dependent on 

KI-KIII. 

( )2
1 11 16 12 15 14

22 24
2 21 26 25

42 44
3 41 46 45

' ' ' ' '

' '' ' '
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i i i i

i i i
i i
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⎛ ⎞
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⎝ ⎠
⎛ ⎞

= − + + −⎜ ⎟
⎝ ⎠

      (3-17) 
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The μi are the roots that occur in conjugate pairs and they arise from the sixth order 

polynomial, equation (3-18).  The coordinate system used in equations (3-14) and (3-16) 

is the same as the one used in (3-1). 

( ) ( ) ( )2
4 2 3 0l l lμ μ μ− =         (3-18) 

Where 

( )
( ) ( ) ( )
( ) ( )

2
2 55 45 44

3 2
3 15 14 56 25 46 24

4 3 2
4 11 16 12 66 26 22

2

2 2 2

l S S S

l S S S S S S

l S S S S S S

μ μ μ

μ μ μ μ

μ μ μ μ μ

′ ′ ′= − +

′ ′ ′ ′ ′ ′= − + + + −

′ ′ ′ ′ ′ ′= − + + − +

   

The N matrix in equation (3-14) is defined as  

1 2 3

1 2 3

1 1 1

ijN μ μ μ
λ λ λ

⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

        (3-20) 

Where λi is defined as l3(μi)/ l2(μi). 

There are two situations, also called degenerate cases, where this solution is 

invalid, however.  If anti-plane shear and plane strain displacements becomes decoupled-

for monoclinic materials, say-Hoenig’s formulation falls apart.  He does present an 

alternate solution for monoclinic materials which turns out to be consistent with the Sih et 

al solution mentioned earlier.  His solution also encounters difficulties if the crack is 

lying in a plane that is isotropic.  The N-matrix, equation (3-20), becomes singular 

because μ1 and μ2 = i.  However, we have near-tip solutions for the isotropic cases.  

These are shown in equations (3-1) and (3-2).  

Determining the Stress Intensity Factor—K 

In the above sections, it is necessary to develop solutions for determining the stress 

intensity factor, K.  Over the past 50 years, numerous methods have been developed to 
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determine this parameter.  For simple geometries, a handbook (Tada et al, 1973) of K-

solutions could be consulted.  Alaibadi and Rooke (1991) present an excellent summary 

of the literature on the subject of numerical evaluations of SIFs.  They divide many of the 

available methods into three main categories, denoted as stages in Table 3-1. 

Table 3-1.  Various methods for determining the SIF 
Stage 1 Stage 2 Stage 3 
Handbooks Superposition Collocating, or mapping 
 Stress concentration Integral transform 
 Stress distribution Body force method 
 Green’s function Method of lines 
 Approximate weight function Finite element method 
 Compounding Boundary element 
  Alternating technique 
 

As one might have guessed, the procedures listed in the Stage 3 category are the 

most accurate.  Since computers have become less expensive and more powerful in recent 

years, many of the current studies geared toward K-solutions incorporate the use of the 

finite element (FE) method or boundary element (BE) techniques.  Boundary element 

methods are particularly attractive because the dimensionality of the numerical problem 

is reduced, i.e.  2-D problems involve discretizing the line-boundary of the domain and 

for 3-D problems, just the surface of the domain is discretized.   

This analysis will call on the FE method to help compute K, and there are a few 

ways of determining it with this method, such as: extrapolation of near-tip stress and 

displacement fields, Rice’s J-integral (1968), strain energy, and the virtual crack 

extension method.   

FRANC3D Next Generation Software 

The Cornell Fracture Group has developed software capable of creating crack 

meshes and computing an anisotropic K-solution.  This particular method of solution 

would fall under Stage 3 in Table 3-1, and in this case Rice’s J-contour integral along 

Administrator
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with displacements output from FE software will be used to determine K along the crack 

front.  This software is very versatile in that it is not restricted to analyzing any one kind 

of material; K-solutions can be generated for isotropic and fully anisotropic materials 

alike.  

Since many FE models were built and the subsequent K-solutions computed with 

this software, it would be prudent to discuss the pertinent theory (Banks-Sills et al, 2005) 

that governs this particular way of calculating K.  Rice’s J integral, a conservation 

integral that measures the energy flux into the crack tip, is equivalent to the strain energy 

release rate (denoted as G) for small scale yielding.  Furthermore, it can be shown for a 

plane problem that only has KI and KII that  

2 2( )G J KI KIIα= = +         (3-21) 

Where α = (1-ν2)/E for plane strain and α = 1/E for plane stress. One can see that the J-

integral equation, as is, cannot give us the SIFs on an individual basis. 

i
i

uJ Wdy T ds
xΓ

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠∫         (3-22) 

with W = (1/2)σijεij, also known as the strain energy density, T = σijnj and ui is the 

displacement vector.   

The path, Γ, is defined in Figure 3-3 

  

Figure 3-3.  Path of the J-integral 
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The J-integral was initially formulated for 2-D problems, however since this 

material has properties that are direction dependent, our analysis requires the use of 3-D 

FE models.  The J-integral, then, needs to be modified so it can be used in integrations 

that take place over volumes.  Following Li et al (1985), the J-integral can be rewritten as 

ds
x
qW

x
u

J
j

j
i

ij ∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

= ∫
Γ

1
1

δσ         (3-23) 

In this formulation, the crack is undergoing a ‘virtual extension,’ and only a small portion 

of the crack front is being advanced.   When using the formulation from the Li et al 

paper, the J-integral is now evaluated in a cylindrical domain centered over the crack 

front. 

 

Figure 3-4.  Cylindrical domain and virtual crack advance for a 3-D crack front 

Following Figure 3-4 we can define incremental area of virtual crack advance as 

( )maxq
L

A a q s ds
Δ

= Δ ∫          (3-24) 

The definition of J in equation (3-22) requires Г to be very small.  It is difficult to 

compute stresses and strains about a vanishingly small path about the crack tip.  Instead, 
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area integrals (Moran and Shih, 1987) are used (for 2-D problems) because they are 

easier to implement numerically.  So, the q term in (3-23) is simply a mathematical tool 

that enables us to recast the J-integral into a slightly more usable form. 

This virtual extension method is the modern-day approach to solve computational 

fracture mechanics problems.  One of the main advantages of such a method is the ability 

to compute the energy release rates across the crack front for 3-D problems.  Since the 

energy release rates can vary over the front that implies K can also change with respect to 

crack front position as well 

qt

t

A
J

dssq

dssqsJ
J ==

∫
∫

)(

)()(
        (3-25) 

where qt(s) is the crack tip perturbation.   

Rice’s J-integral does not allow us to look at the SIFs on an individual basis for a 

mixed mode crack problem.  This hurdle was first surpassed by Ishikawa (1980) where 

he decomposes the stress, strain, and displacement fields into symmetric and anti-

symmetric parts.  This allows him to use the J-integral to compute the Ks individually.  

Ishikawa’s method, though, has not been extended for anisotropic materials.   Yau et al. 

(1980) uses the M-integral developed by Freund (1978) to determine KI and KII, 

individually, by using the idea that two separate and independent equilibrium states 

(denoted by superscripts (1) and (2)) for a linear elastic, isotropic material can be related 

to a third equilibrium state, denoted with no superscript.  That is to say the stresses, 

strains, displacements, and SIFs from these separate equilibrium states can be superposed  

(1) (2) (1) (2)

(1) (2) (1) (2)

(1) (2) (1) (2)

                                                                            

          

            

ij ij ij

ij ij ij

i i i

KI KI KI

KII KII KII

u u u KIII KIII KIII

σ σ σ

ε ε ε

= + = +

= + = +

= + = +

 (3-26) 
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The J-integral can now take the form  

(1) (2) (1,2)J J J M= + +          (3-27)  

The M(1,2) term is known as the M-integral initially derived by Freund and it can be recast 

in terms of the aforementioned equilibrium states   

(2) (1)
(1,2) (1,2) (2) (1,2)

1,
1 1

i i
ij ij j

j

u u qM W
x x x

σ σ δ
Γ

⎛ ⎞∂ ∂ ∂
= + −⎜ ⎟∂ ∂ ∂⎝ ⎠
∫      (3-28) 

This integral describes the interaction between the two equilibrium states, and sometimes 

the M-integral is called the ‘interaction’ integral in the literature.   

The first step in the procedure to determine the SIFs is to define the strain energy 

release rate using Irwin’s (1957) crack closure integral.  Consider the crack in Figure 3-5.  

Now a compressive, or closure stress, is applied in such a fashion to clamp the crack 

faces down along the length δ-r.  The work it takes to perform this closure can be related 

to the energy release rate, G.  Irwin goes on to use the force displacement curve and 

equate that to the work required to close the crack.  Substitutions are made for near-tip 

displacements and stresses and eventually an integral expression is obtained that relates 

the energy release rate to the stress intensity factor.   

In a similar manner, Hoenig (via Equation 3-30) provides us an analytical 

expression for the energy release for general anisotropy in terms of the SIFs and material 

constants.  Irwin’s work was initially developed for brittle, isotropic materials; his 

expression for the energy release rate includes the isotropic Poisson ratio and the Young 

and shear moduli. 

0
0

1lim ( ,0) ( , )      j jG r u r dr
δ

δ
σ δ π

δ→
= − ⋅∫       (3-29) 
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Figure 3-5.  Definition of Irwin’s crack closure integral 

Now, if the stress and displacement fields are substituted in (3-29), we have 

1 1 1
2 1 3

1 Im( ) Im( ) Im( )
2 i ij j i ij j i ij jG J KI m N K KII m N K KIII m N K− − −⎡ ⎤= = − + +⎣ ⎦  (3-30) 

When we use the relations for SIFs in (3-26), we get 

(1) (2) 1 (1) (2) 1
2 1

(1) (2) 1
3

( ) Im( ) ( ) Im( )1
2 ( ) Im( )

i ij j i ij j

i ij j

KI KI m N K KII KII m N K
G J

KIII KIII m N K

− −

−

⎡ ⎤+ + +
= = − ⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 (3-31) 

The terms in (3-27) have bars over them because a certain definition of J is used in (3-

23).  Let us define an alternate form of (3-27) where J is not normalized with respect to 

the extended area as 

(1) (2) (1,2)J J J M= + +          (3-32) 
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Now we substitute (3-31) into (3-32) and for clarity the individual terms of that equation 

are listed below 

(1) (1) 1 (1) (1) 1 (1) (1) 1 (1)
2 1 3

(2) (2) 1 (2) (2) 1 (2) (1) 1 (2)
2 1 3

1 Im( ) Im( ) Im( )
2
1 Im( ) Im( ) Im( )
2

i ij j i ij j i ij j

i ij j i ij j i ij j

J KI m N K KII m N K KIII m N K

J KI m N K KII m N K KIII m N K

− − −

− − −

⎡ ⎤= − + +⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

 (3-33) 
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2 22
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i ij j i ij j

i ij j i ij j

M KI m N K KI m N K

KII m N K KII m N K

KIII m N K KIII m N K
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⎡= − +⎣

+ +

⎤+ + ⎦

    (3-34) 

It is now evident how the decomposition of displacements, strains, and stresses into 

separate equilibrium states is helpful.  One can see that we have two definitions of the M-

integral, equations (3-28) and (3-34).  If they are equated, the individual SIFs (KI(1), 

KII(1), KIII(1)) can be computed.  But before that step, we must define ‘auxiliary’ 

solutions for the second equilibrium state, denoted by superscripts (2a, 2b, 2c).  The 

terms with the (1) superscript are going be computed numerically via FE software.   

The three auxiliary solutions are defined as: 2a, 2b, and 2c.  For case 2a, KI(2a) = 1 

and KII(2a) = KIII(2a) = 0.  For case 2b, KII(2b) = 1 and KI(2b) = KIII(2b) = 0, and for case 2c, 

KIII (2c) = 1 and KI(2c) = KII(2c) = 0.  Since the SIFs are being prescribed beforehand, the 

stresses, for those equilibrium states, can be computed from (3-14).  Now the two 

relations for the M-integral are equated 

(1) 1 (2)
2

(2) 1 (1)
(2) (1) 2

(1) (2) (1,2)
(1) 1 (2)1

11 1
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i ij j

i ij

KI m N K

KI m N Ku u qW ds KII m N Kx x x
A KII m N K
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⎢ ⎥
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   (3-35) 
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From (3-35) we can assemble a system of equations that contain the three unknown SIFs 

we are after 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1
(1) (1,2 )2 1 1 1 2 2 3 1 2 3

1 1 1 1 1 (1) (1
2 2 1 1 1 2 3 2 1 3

(1)
1 1 1 1 1

2 3 3 1 1 3 3 2 3 3

2 Im Im Im

Im 2 Im Im

Im Im 2 Im

ai i i i i i i i i i
q

i i i i i i i i i i

i i i i i i i i i i

m N m N m N m N m N KI M A
m N m N m N m N m N KII M

KIIIm N m N m N m N m N

− − − − −

− − − − −

− − − − −
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⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

 (3-36) 

Finally, we note that (3-36) involved the extraction of stresses near the crack tip.  These 

stresses are taken from the Gauss point locations within the elements that encompass the 

crack front.  Also, the integral in (3-36) is evaluated numerically using Gauss quadrature. 

Computing SIFs Using Displacement Correlation 

Displacement correlation (DC) is perhaps the oldest and simplest method to 

compute SIFs via FE displacements.  Chan et al (1970) were among the first group of 

researchers to employ such a method to obtain SIFs this way.  In general, the correlation 

point is selected where the crack tip displacements are the largest so the relative error in 

displacements is small.  Another advantage in using such a method is the SIFs are 

separated into the three modes defined in Figure 3-2.  In its most basic form, crack tip 

opening displacement (CTOD) can be used to determine the SIF by equating the 

displacements at the points in question to some analytical solution.   

From equation (3-2) with ω = π and Figure 3-6 for a plane strain problem dealing 

with an isotropic material, we have 

( )2 2
1

yb ya su u
KI

r
μ π

κ
−

=
+

        (3-37) 

( )2 2
1

xb xa su u
KII

r
μ π

κ
−

=
+

        (3-38) 
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where μs, again, is the shear modulus determined by E/2(1+ν) and κ = 3-4ν for plane 

strain .  We note that uy and ux are the opening and sliding modes of displacement.  The 

above method is sometimes called a ‘one-point’ matching technique since it involves 

extracting displacements from one point near the crack tip.  The downside of such a 

 

Figure 3-6.  Correlation points typically used for displacement correlation 

method is that very refined meshes are needed for accurate results.  Improved accuracy is 

obtained through the use of a special element specifically designed to capture the 

singularity present at the crack tip. 

From equation (3-1), we see how the stresses have a 1/√r singularity at the crack 

tip.  For accurate computations, we would like our FE models to also have this 

singularity.  Quarter point elements are one way to do this.  The first attempts at 

modeling cracks were done so using quadrilateral elements with the mid-side nodes 

moved to quarter point locations (Barsoum, 1976)  When this is done the desired strain 

singularity is achieved.  However, one downside of using this type of element is that the 

singularity is only present on the edges that contain the quarter point.  If triangular-

shaped elements are used instead, the singularity exists both along the edges and within 

the element (Anderson, 1991).  

In Figure 3-7, we see how an eight node quadrilateral element can be transformed 

to a triangle and then certain nodes are moved to the quarter point locations.  Let us 
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derive how the required strain singularity is obtained along the edge of the quadrilateral 

element with the mid-side nodes moved to the quarter point locations.  Consider the 

bottom edge of the element on the right in Figure 3-8.  Nodes one, five, and two lie along 

this boundary.  In order to show how the strain singularity comes about, we will need to 

list the shape functions for this particular element.  The shape functions (Logan, 2002) for 

the isoparametric element at the corner nodes are 

( )( )( )1 1 1 1
4i i i i iN ξξ ηη ξξ ηη= + + + −       (3-39) 

where i is the number of the shape functions at the corresponding node (i.e. N1 is the 

shape function for node 1) and  

1,1,1, 1      ( 1, 2,3,4)
1, 1,1,1      ( 1, 2,3,4)

i

i

i
i

ξ
η
= − − =
= − − =

       (3-40)  

We also have shape functions for the mid-side nodes 

( )( )

( )( )

2

2

1 1 1        1,1      ( 5,7)
2
1 1 1        1,1      ( 6,8)
2

i i i

i i i

N t i

N i

ξ ηη

ξξ η ξ

= − + = − =

= − + = − =
     (3-41)  

The global origin is placed at the corner of the element.  We will need the shape functions 

at nodes one, two, and five.  Setting η = -1 we have 

( )

( )

( )

1

2

2
5

1 1
2

1 1
2
1

N

N

N

ξ ξ

ξ ξ

ξ

= − −

= +

= −

         (3-42) 
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Figure 3-7.  Triangular quarter point elements 

 

Figure 3-8.  Isoparametric element and degenerated element with mid-side nodes moved 
to quarter point locations 

The global x coordinate is related to the isoparametric coordinate system via 

i ix N x=           (3-43) 

where the repeated index is an implied summation.  Setting x1 = 0, x2 = L, and x5 = L/4 

we have 

( ) ( )21 1 1
2 4

Lx Lξ ξ ξ= + + −         (3-44) 
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We can now solve for ξ 

2 1x
L

ξ = −           (3-45) 

In the same way that we can relate the global x coordinate to the shape functions, we can 

also determine the displacements using the shape functions 

i iu N u=           (3-46) 

Again determining the displacements along the edge containing nodes one, two, and five 

we write 

( ) ( ) ( )2
1 2 5

1 11 1 1
2 2

u u u uξ ξ ξ ξ ξ= − − + + + −      (3-47) 

Now we can substitute (3-45) into (3-47) to obtain 

1 2 5
1 1 2 2 2 1 2 2 4
2

x x x x x xu u u u
L L L L L L

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − + − + − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (3-48) 

We note that the displacement shown in (3-48) has a √x term present.  This is consistent 

with equation (3-2) where the displacements vary with √r.  We need to differentiate 

equation (3-48) to obtain the strain in the x direction 

1 2 5
1 3 4 1 1 4 2 4
2 2x

u u u u
x L L LxL xL xL

ε ∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − − + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   (3-49) 

Finally, it is shown in (3-49) how the strain displays the desired singularity (x-1/2).  

One can see why the quarter point element has been the standard for modeling cracks for 

the past 30 years.  No special programming, or internal tampering, with the FE code is 

required.  Any FE program that carries quadratic, or higher order, elements can support 

these special ones with the nodes moved to the quarter points. 
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Let us now return to our discussion of using displacement correlation to extract 

SIFs from FE models.  If quarter point elements are used, equations (3-37) and (3-38) are 

modified because r = L/4 

( )4 2
1

yb ya su u
KI

L
μ π

κ
−

=
+

        (3-50) 

( )4 2
1

xb xa su u
KII

L
μ π

κ
−

=
+

        (3-51) 

The SIFs extraction via the DC method need not be restricted to just one set of nodes, or 

correlation points.  One can also consider the displacements over the whole element.  The 

form of these equations depends on the shape functions of the elements.  Ingraffea and 

Manu (1980) derive a DC extraction method using 3-D elements.   This formulation is 

particularly useful to the present study since 3-D simulations are used to model the 

fracture response of the foam material.  Ingraffea and Manu use a special labeling 

convention shown in Figure 3-10 for a collapsed 20 node brick element (Figure 3-9), also 

known as a 15 node wedge.  

 

Figure 3-9.  20 node brick and 15 node wedge elements 

The shape functions for a 20 node brick element are listed below.  The local (ξ,η,ζ) 

coordinate system is placed at the center of the brick element.  For the corner nodes at 

positions i = 1,2…8 and ξi, ηi, ζi = ±1 
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( )( )( ) ( )1 1 1
2

8
i i i

i i i iN
ξξ ηη ζζ

ξξ ηη ζζ
+ + +

= + + −      (3-52) 

For the nodes at positions i = 17, 18, 19, 20 and ξi = 0, ηi = ±1, ζi = ±1 

( )( )( )21 1 1
4

i i
iN

ξ ηη ζζ− + +
=        (3-53) 

At i = 10, 12, 14, 16 and ξi = ±1, ηi = 0, ζi = ±1 

( )( )( )21 1 1
4

i i
iN

ξξ η ζζ+ − +
=        (3-54) 

Finally, for the nodes at positions i = 9, 11, 13, 15 and ξi = ±1, ηi = ±1, ζi = 0 

( )( )( )21 1 1
4

i i
iN

ξξ ηη ζ+ + +
=        (3-55) 

For anisotropic materials, Saouma and Sikiotis (1986) extend Ingraffea’s work for 

anisotropic materials.  They use the displacement relations developed by Sih et al.  A 

similar procedure is followed in this study, but instead of using displacement equations 

from Sih et al’s paper, the relations in (3-16) are to be employed.   The equations to 

determine the anisotropic Ks, using Hoenig’s displacement equations, are as follows 

[ ] [ ]1

2

KI
KII B A

L
KIII

π−
⎧ ⎫
⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎩ ⎭

        (3-58) 

where [B] is 

( )
( )
( )

1
1

1
2

1
3

cos sin

[ ] Re cos sin

cos sin

j jl j

j jl j

j jl j

m N

B m N

m N

ω μ ω

ω μ ω

ω μ ω

−

−

−

⎡ ⎤+
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥+⎣ ⎦

      (3-59) 
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Figure 3-10.  Collapsed 20-node brick element 
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 (3-57) 

Once again, the repeated indices are an implied summation.  The terms in the B matrix 

only depend on the roots of the sixth order characteristic equation. 

Effects of Temperature on the SIF Solution 

In chapter two it is pointed out that temperature plays no small role in causing the 

foam to break off from the ET.  For example, when Shuttle is resting on the launching 
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pad, one side of the foam is exposed to the temperature of liquid hydrogen and oxygen; 

roughly -300oF.  The other side of the foam is exposed to air, perhaps at 75 oF prior to 

liftoff.  Over typical acreage sprays, the foam is approximately three inches thick.  This 

small thickness coupled with a large thermal gradient suggests that thermal strains could 

be significant.  As shown with the divot testing in chapter two, even though there are no 

applied far-field mechanical loads, the thermal gradient seems to be sufficient enough to 

impart stresses capable of driving a crack toward the surface of the ET resulting in a loss 

of material. 

To account for thermal strains, we simply add this term to our constitutive matrix.  

Following Hyer (1998), the stress-strain relations can be written as 

11 11 1111 12 13

2222 22 21 22 23

3331 32 3333 33

44 2323

55 1313

66 1212

( , ) 0 0 0
( , ) 0 0 0

0 0 0( , )
0 0
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ref
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ref

Th
ref

T T S S S
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σε ε
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   (3-60) 

where the total strain is {ε11 ε22 ε33 γ23 γ13 γ12}T, εTh
11(T, Tref) is the free thermal strain in 

the 11-direction, and Tref is the reference temperature.  The mechanical strains are  
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        (3-61) 

or, stated more concisely the total strain is  

εtotal = εmech + εthermal         (3-62) 
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If the thermal expansion is linear with the temperature change, we can rewrite (3-60) as 

11 1 1111 12 13

22 2 2221 22 23

33 3 3331 32 33

4423 23

5513 13

6612 12

0 0 0
0 0 0
0 0 0

0 0
0

T S S S
T S S S
T S S S
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ε α σ
ε α σ
γ σ
γ σ
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− Δ⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥− Δ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥− Δ⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

    (3-63) 

The αi term is the coefficient of thermal expansion and ΔT is the difference of 

temperature between the state of interest and the reference state.    

The above equations allow us to compute thermal strains in the numerical models.  

Incorporating thermal and mechanical loads will involve two separate steps because a 

thermal gradient implies that a temperature distribution must be obtained before solving 

the model that contains both the thermal and mechanical boundary conditions.  The first 

step is to solve the conduction problem using the thermal conductivity coefficient listed 

in chapter two.  The nodal temperature distribution is saved for later use.  In a subsequent 

run, now with mechanical loads, the nodal temperatures are carried over as body forces 

along with any applied mechanical loads. 

Summary  

Summing up, the analytical expressions from Hoenig’s near-tip solution is 

presented.  His equations depend solely on the roots of the characteristic equation and the 

stress intensity factor, K.  Hoenig’s solution is not as well known as Sih et al’s paper and 

as such the vast majority of studies dealing with near-tip solutions for cracked anisotropic 

bodies use the Sih et al formulae to compute the stresses.  This is acceptable as long as 

one realizes those particular equations are valid for certain configurations where a 

decoupling of in-plane and out-of-plane displacements takes place.  Hoenig’s solution is 
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more general and his formulation of the energy release rate is the one chosen to compute 

the SIFs within the FRANC3D software.  The DC technique presented also uses Hoenig’s 

equations, but only the ones that pertain to displacements. 

These two methods, interaction integral and DC, are presented to show how the 

mode I-III SIFs can be computed.  These formulations are different in a few ways.  

Computing K with the J-integral is inherently more accurate because only a moderate 

level of mesh refinement is needed for the solution.  However, the implementation of 

such a method is very involved.  Alternatively, the DC approach is much easier to apply 

but the accuracy of the solution does depend on the level of mesh refinement. 

Finally, the relations dealing with handling thermal strains are presented.  These 

equations assume an expansion that is linear with temperature change.   Handling thermal 

loads is straightforward by first solving the conduction problem to obtain the nodal 

temperature distribution.  With that, those values are forwarded as body forces that are 

applied alongside the mechanical loads.
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CHAPTER 4 
CRACK TURNING THEORY AND FINITE ELEMENT MODELING 

Crack Turning Theory 

There are three theories prevalent in the literature to predict incipient crack turning 

angles for isotropic materials: maximum energy release rate, minimum strain energy 

density, and maximum hoop stress.  All of these theories are based on LEFM concepts 

and were initially developed from experiments involving brittle plates. 

The turning theory proposed by Hussain et al. (1974) seeks the direction where the 

energy release rate, G, will be a maximum.   The minimum strain energy density theory 

(Sih, 1974) postulates crack turning in the direction where the strain energy density is at a 

minimum.  The maximum hoop stress theory proposed by Erdogan and Sih (1963) 

predicts crack propagation in the direction whereσω, defined in equation (4-1), is a 

maximum relative to the crack tip.  Crack turning, in this study, denotes the incipient 

turning angle.  We define the crack turning angle, ωc, below in Figure 4-1.   

For isotropic materials, the near-tip stresses (in the r, ω polar coordinate system) 

have been derived by Williams (1957).  If the derivative with respect to theta of equation 

(4-1) is taken and set to zero, the critical angle, ωc, can be determined; equation (4-4). 

21 3cos cos sin
2 2 22

KI KII
rω

ω ωσ ω
π

⎡ ⎤= −⎢ ⎥⎣ ⎦
      (4-1) 

21 3cos 1 sin sin 2 tan
2 2 2 22r KI KII KII

r
ω ω ωσ ω

π
⎡ ⎤⎛ ⎞= + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

   (4-2) 
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Figure 4-1.  Definition of crack turning angle 

( )1 cos sin 3cos 1
22 2r KI KII
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ωσ ω ω

π
= + −⎡ ⎤⎣ ⎦      (4-3) 
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2 tan
4( )c
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KII KI

ω −
⎛ ⎞− +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

       (4-4) 

The maximum hoop stress theory is the easiest to implement and that is perhaps the 

main reason why it is widely used for turning angle predictions.  The minimum strain 

energy density criterion is also very popular and there is some debate (Gdoutos, 1984) as 

to which one is superior.  Some might argue that it is not correct to use just a single 

component of stress to predict the incipient turning angle, whereas a quantity such as 

strain energy density seems to be more comprehensive as all components of stress and 

strain are included.  Maccagno and Knott (1989, 1992) study mixed-mode facture 

behavior of PMMA and lightly tempered steel alloys and in both cases the crack turning 

angles are well approximated by the maximum tangential stress theory. 

There have been some topical investigations for crack turning within materials that 

have direction dependent properties.  Buzcek and Herakovich (1985) predict the crack 
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extension angle for orthotropic materials and some of the recent work in this area mirrors 

their ideas.   They assume the tensile strength, T, of the orthotropic material varies with 

direction, η.  Since it is difficult to measure the strength of a material in all possible 

orientations, they assume that T = f(η, θ, XT, YT) where η is the angle in a polar 

coordinate system, θ is the material orientation and  XT and YT are the strengths of the 

material in the axial and fiber directions respectively (they are analyzing orthotropic 

composites).  The equation for T, also denoted as a fracture resistance parameter, must be 

independent of η if the material is isotropic.  The lowest order function that satisfies these 

requirements is an ellipse.  This function is plotted in Figure 4-2 in (Tηη, η) polar 

coordinates.  Now Tηη can be expressed as 

2 2sin cosT TT X Yηη η η= +         (4-5) 

 

Figure 4-2.  Elliptical relationship for Tηη 

The crack will turn, according to Buzek and Herakovich, in the direction where the 

ratio of the hoop stress to T is a maximum.  The hoop stress, sometimes called the 

tangential stress (or σω), is defined in Figure 4-3.  Consider a point P and a vector 



59 

 

connecting that point to the crack tip.  The hoop stress is normal to this vector that 

connects P to the crack tip. 

 

Figure 4-3.  Definition of hoop stress 

Mixed mode crack propagation in anisotropic materials is also investigated by 

Saouma et al. (1987).  The near-tip stresses are obtained via Sih et al. (1965) and in their 

analysis the maximum tangential stress theory is used to predict the angle of propagation.  

Saouma et al. use a slightly different criterion for crack turning, but it is of similar flavor 

to what Buzek and Herakovich propose.  Instead of using strength as a fracture resistance 

parameter, the plane strain fracture toughness is utilized. 

Boone et al.1987) use FE models to study crack propagation in orthotropic 

materials.  The idea of maximizing the ratio of the hoop stress to some strength parameter 

is once again utilized to predict the crack turning angle.  Chen (1999) analyzes crack 

propagation in aircraft fuselages.  He, too, makes use of a ratio of the hoop stress to the 

plane strain fracture toughness.  In this case, the material in question has isotropic elastic 

moduli, but the fracture properties are direction dependent.  A similar analysis is 

conducted by Pettit (2000).  He examines crack turning in rolled aluminum, which again, 

has isotropic stiffness properties but anisotropic fracture characteristics.   
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Carloni et al. (2003) and Nobile and Carloni (2005) consider incipient crack 

turning for an orthotropic plate under biaxial loading.  The former researchers utilize 

essentially the same fracture resistance parameter as Buzek and Herakovich, whereas the 

latter study uses a slightly modified version of the Saouma et al. turning criterion.  

Carloni et al. and Nobile and Carloni also call on complex variables and stress functions 

in their formulations for near-tip stresses.  Both studies, however, make assumptions that 

reduce the order of the characteristic equation that arises in such derivations (see chapter 

three), down to order four.   

While Pettit’s analysis is for a material with isotropic stiffness properties, he 

generalizes the fracture resistance parameter to three dimensions.  His analysis accounts 

for an arbitrary location of the crack with respect to the material.  Thus, we would like to 

use the method to obtain stress intensity factors given by Banks-Sills et al. (2005) in 

conjunction with Pettit’s formulation for a fracture resistance parameter.   This approach 

is a bit more generalized than the aforementioned studies because their work seems to be 

confined to specific configurations that usually decouple the in-plane and anti-plane 

displacements. 

Pettit’s method for determining the fracture resistance is formulated for orthotropic 

materials which possess cubic symmetry, i.e. three orthogonal planes of symmetry and 

within each plane lay two principal toughness values resulting in six principal toughness 

values: K12, K21, K23, K32, K13, and K31.  The first number in that nomenclature is the 

vector normal to the crack plane and the second number corresponds to the direction of 

propagation.  It is difficult to obtain a toughness for all possible orientations for materials 

that exhibit some form direction dependence.  Essentially we are interpolating between 
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the six principal toughness values for the orthotropic material.  This gives us an estimate 

of the toughness in any direction we desire.  Consider Figure 4-4 and the material 

orientation as shown.  What we see in that figure is block of foam with various M(T) 

specimens oriented within it.  If the M(T) specimens are aligned with the principal axes 

of the large block of foam, there are six possible orientations and with each orientation 

there is a corresponding toughness.   

Pettit’s interpolation equation, then, requires six unique toughness values for the 

orientations shown in Figure 4-4.  In our case, only three toughness values are needed, 

however.  In Figure 4-4, consider the M(T) specimens that have the K31 and K32 labels.  

Here the load is applied in the 3-direction and the crack is propagating in the 1 and 2-

directions, respectively.  Since the 3-direction is the rise direction and the 1-2 plane is a 

plane of isotropy, it is reasonable to assume that K31 = K32.  That is to say, the crack is 

resting in the plane of the knit line for those two cases.  For the other four cases, the 

fracture plane is normal to the knit line plane.  Thus, K21 = K12 and K13 = K23.  So the 

total number of required toughness values has been reduced to three and NASA did 

conduct tests, at room temperature, to obtain them: K32 = 22.4 psi√in, K12 = 17.4 psi√in, 

and K23 = 19.5 psi√in.   

Pettit’s equation that will determine the effective K needs several variables besides 

the six principal toughness values.  Remember, the goal here is to try and predict the 

direction of propagation.  We can conveniently describe this direction with a vector, 

denoted as a.  That vector lies in a plane tangent to the fracture surface, whose normal 

vector will be defined as n.  These two vectors are shown in Figure 4-5. 
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Figure 4-4.  Orthotropic toughness values 

 

Figure 4-5.  Definition of the a and n vectors  

To develop the equation for the effective K, we first define the trace angles of the 

vector a makes with the principal planes.  These are 

( ) ( ) ( )3 1 2
1 2 3

2 3 1

tan       tan       tana a a
a a a

ω ω ω= = =      (4-6) 

The subscript in the theta term denotes the axis normal to the principal plane.  Using 

equation (4-5) we can write a 2D interpolation function of the form 
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( ) ( ) ( )2 2cos sink k ki k kj kK K Kω ω ω= +       (4-7) 

We also observe the following trigonometric identities 
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        (4-8) 

and the components of unit vector a must satisfy the relation 

2 2 2
1 2 3 1a a a+ + =          (4-9) 

Pettit goes on to define equations that can be interpreted as the fracture resistance 

components of a in the principal planes.  Consider Figure 4-4 once more where the 1-axis 

is the loading direction.  To estimate an effective K on this plane, we will interpolate 

between two toughness values, K12 and K13.  Using (4-7) through (4-9) we can write K1 

as 
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       (4-10) 

In a similar fashion we can determine K2 and K3  
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       (4-11) 

Finally, Pettit sums the relations in (4-10) through (4-11).  The effective K, denoted as 

Kp, can now be written as 
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    (4-12) 
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FE Modeling of the M(T) Specimen 

While the importance of crack turning was made evident by the divot test, this 

experiment is highly specialized and is not recognized as a standard fracture test 

specimen.  A more conventional way of analyzing crack turning can be performed with 

the middle tension, M(T), test specimen.  Material orientation, mode mixity, and 

boundary conditions can all be carefully controlled with the M(T) specimen.   

The idea behind creating FE models of M(T) specimens is two-fold.  One of the 

objectives of this study is to examine the effect of mode mixity on the K-solution, or 

stated differently, as the material orientation is changed how does this impact KI-KIII 

along the crack front?  Also, several foam M(T) specimens were fabricated and the 

resulting crack turning angles measured.  Numerical predictions, based on Ks extracted 

from the FE models are used to make predictions via the maximum hoop stress theory 

discussed earlier. 

M(T) FE models are built using ANSYS FE software.  Crack meshing is handled 

by FRANC3D, a FE software package developed by the Cornell Fracture Group.  Figure 

4-6 shows a schematic of the M(T) specimen and Figure 4-7 displays one of the FE 

models used in this analysis.  The FE model has a unit applied pressure at the top and 

bottom faces and is simply supported.  The model is comprised of entirely of SOLID92 

and SOLID95 elements (ANSYS™, 1999) which are used to make 3D models and have 

the capability to handle anisotropic material properties.  The model is twelve inches high, 

five-and-a-half inches wide, and an inch-and-half thick.  The boxed in area in Figure 4-7 

highlights the densely meshed region containing the crack. 
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Figure 4-6.  Schematic of M(T) specimen 

     

Figure 4-7.  M(T) model created in ANSYS 

Since the foam has direction dependent properties, this needs to be accounted for in 

the FE models.  This is best done by using direction cosines.  Using Figure 4-8, let us 

look at simple transformation of axes to define a new material orientation.  Consider two 

sets of axes: x, y, z and x’, y’, z’.  Initially, the both sets of axes are aligned and then a 

rotation, anti-clockwise (of angle zeta) about the x axis, takes place.  Table 4-1 lists the 
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1.5” 
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direction cosines, i.e. the cosines of the angles between the primed and unprimed axes.  

Here α1 is the cosine of the angle between the x’ and x axis, α2 is the cosine of the angle 

between the y’ and x axis, and so on.  We will examine several material orientations with 

different initial crack inclinations.  In this way, mode mixity is introduced into the 

problem and we also examine the effect of material orientation on the predicted 

propagation path. 

 

Figure 4-8.  Sample transformation 

Table 4-1.  Direction cosines 
 x y z 
x’ α1 β1 γ1 
y’ α2 β2 γ2 
z’ α3 β3 γ3 
 

As mentioned in an earlier section, for typical acreage sprays there is little offset 

between the material and substrate coordinate systems except when the foam is applied 

near fittings and/or bolts where the foam can to rise at angles as high as 30 degrees 

relative to the ET.  Twelve M(T) fracture test samples with varying material orientation 

and crack inclination were fabricated and tested.  A broken M(T) specimen is shown in 

Figure 4-9 and a comparison between the numerical prediction and the measured turning 
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angle, as well as how the foam M(T) specimens are fabricated, will be made in chapter 

five.   

 

Figure 4-9.  Fractured M(T) specimen: the dotted line is added to show the location of the 
knit line 
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CHAPTER 5 
RESULTS AND DISCUSSION 

Effect of Material Orientation on the SIF Solution 

On most sections of the ET, the foam is sprayed on in such a fashion that it rises 

normal to the surface.  In that sense, there is very little offset between the tank (substrate) 

coordinate system and the foam (material) coordinate system.  Also, when modeling 

these specimens, we should note that the curvature of the ET is rather large; some 28 ft in 

diameter and our specimens tend to include small defects (usually two inches).  Thus, it 

seems reasonable to assume that curvature effects are minimal.  But when the spraying 

process takes place near a bolt or fitting point, the foam must be applied around, and over 

top of, these parts.  In this situation it is possible to have the foam rising at different 

angles relative to the surface. 

The anisotropic nature of the foam requires 3-D FE models to be employed so the 

SIFs can be evaluated along the crack front.  To that end, the effect of material 

orientation on the K-solution will be examined within models that have both straight and 

diagonal cracks.  Before moving on with this discussion, let us define a few important 

terms that we will use extensively throughout this chapter.  The crack inclination angle, 

ϕ, is the angle the crack makes with the horizontal as shown in Figure 5-1.  M(T) models 

use though-cracks, or flaws that are placed through the thickness of the specimen, or 

model, in question.  The crack front distance defined as the length of the crack in the 

thickness direction, shown in Figure 5-2.  
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Figure 5-1.  Definition of crack inclination angle 

To analyze the effect of material orientation of the SIF solution, 17 material 

orientation cases are defined; see Figures 5-4 and 5-5.  M(T) models are constructed 

using ANSYS™ FE software and the flaw is inserted using FRANC3D Next Generation.   

 

Figure 5-2.  Definition of crack front distance 
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A unit pressure is applied to the simply supported M(T) models and in all cases, the 

crack length is two inches.   A picture of the ANSYS model (with dimensions) is shown 

below.  The material orientations are also input into the FE models along with the loads 
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Figure 5-3.  M(T) model built in ANSYS 

 

Figure 5-4.  Definition of material orientation 
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Figure 5-5.  Top view of the cones shown in Figure 5-4   

and boundary conditions.  There are many different orientations at which the foam can 

rise relative to the tank.  But when the foam is sprayed down, at some locations, the rise 

direction relative to the tank can be as high as thirty degrees.  An example of this 

happening is shown in Figure 5-5. 

 

Figure 5-6.  Hypothetical material orientation relative to the ET 

One can see how the foam can rise at angle when it sprayed out the bolt shown in the 

above in Figure 5-6.   As such we would like to have a reasonable ‘tolerance’ that the rise 
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direction can fall into.  This would give rise to a range, or set, of possible orientations that 

could occur when the foam is being applied.  Since the foam can rise at thirty degrees, it 

might be interesting to examine the possibility of the foam rising at another, larger, angle; 

45 degrees, for example.  Thus we now have two possible cases to examine; a rise angle 

that is typical near fitting points and bolts, and one that is slightly larger. 

The material orientations used in this study can be visualized by setting up two 

concentric cones.  The points on the ‘rims’ of the cones denote where the z’-axis (local 

rise direction) will be for each material case.  Let us consider an example.  Point one in 

Figure 5-4 lies on the inner, 30 degree, cone.  To define the material axes for this case, a 

single transformation of 30 degrees, denoted by zeta, in Figure 5-7 is performed.  This 

can be likened to the knit lines being oriented within the M(T) specimen shown in Figure 

5-7.  Table 5-1 lists the direction cosines, i.e. the cosines of the angles, between the 

primed and unprimed axes.  Here α1 is the cosine of the angle between the x’ and x axis, 

α2 is the cosine of the angle between the y’ and x axis, and so on. 

               

Figure 5-7.  Definition of case one material orientation for the M(T) FE model 
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Table 5-1.  Direction cosines for the case one material orientation 
 x y z 
x’ α1 = 1 β1 = 0 γ1 = 0 
y’ α2 = 0 β2 = 0.866 γ2 = 0.5 
z’ α3 = 0 β3 = -0.5 γ3 = 0.866 
 
 Figure 5-8 is a plot of the mode I SIF against normalized crack front distance for 

cases 1- 4.  The mode I SIF for the case zero orientation, the case where the material and 

substrate axes are coincident, is also plotted to make a comparison.  Figure 5-8 pertains to 

a straight crack that is parallel to the horizontal (no inclination).  Even though this 

material is anisotropic, for this geometry, KII and KIII remain small compared to KI.  

This is not always the case, however, particularly when the crack is inclined.  To examine 

the effect of mode mixity, the crack in the M(T) model is inclined by 30 degrees.  All 

cases are rerun and in Figures 5-9 through 5-11, the mode I-III SIF is plotted versus the 

normalized crack front distance for cases one through four.  As expected, when the crack 

is inclined KI decreases, and KII-KIII increase.  This is consistent with isotropic 

assumptions.  For the configuration shown in Figure 6-1, the KI and KII are related to ϕ, 

or the crack inclination angle (Anderson, 1991) 

( )

( ) ( )

2cos

sin cos

KI a

KII a

σ ϕ π

σ ϕ ϕ π

=

=

        (5-1) 

We can see that KII is zero when ϕ = 0 and that KI will decrease for increasing values of 

ϕ. 
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Figure 5-8.  Mode I SIF for cases 1-4; 0 degree crack inclination 

 

Figure 5-9.  Mode I SIF for cases 1-4; 30 degree crack inclination 
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Figure 5-10.  Mode II SIF for cases 1-4; 30 degree crack inclination 

 

Figure 5-11.  Mode III SIF for cases 1-4; 30 degree crack inclination 
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The mode I SIF for ϕ = 0 is listed in tables 5-2 and 5-3.  Here we can see the variation of 

the mode I SIF as the material orientation is changed.  For these cases, the ones that 

resulted in the largest KI are: 11 and 15 (2.27 psi √in).  When you compare that number 

to the KI for case zero, the orientation for typical acreage sprays, the largest KI is just 

14% higher.  This is an interesting result in that even if we ‘lean’ the z-axis by quite a bit, 

the resulting mode I SIF is not much greater than the mode I SIF for the case 0 

orientation.  However, it is possible to orient this material in an infinite number of ways 

and it could be possible to obtain a KI value for an arbitrary orientation that is greater 

than the largest value determined in this section (2.27 psi √in).   

Table 5-2.  KI for cases 0-8, 0 degree inclination  
 Case 0 1 2 3 4 5 6 7 8 

KI (psi √in) 1.99 2.01 2.14 2.25 2.14 2.01 2.14 2.25 2.14 
 
Table 5-3.  KI for cases 9-16, 0 degree crack inclination 

 Case 9 10 11 12 13 14 15 16 
KI (psi √in) 2.07 2.19 2.27 2.19 2.07 2.19 2.27 2.19 
 

Crack Turning Predictions 

We can numerically predict the crack turning angles using the maximum tangential 

stress criteria since we have SIFs from FE models and the near-tip stress solutions from 

Hoenig (1982).  As discussed in chapter four, we will use a ratio of the tangential stress, 

σωω, to Kp for turning angle estimations.  Let us denote the ratio of σωω/Kp as R and 

where R is a maximum, that is the direction of predicted propagation.   To make a 

comparison, NASA has donated several broken M(T) specimens with various material 

orientations.  The turning angles within these specimens will be measured and compared 

to their numerical counterparts. 
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M(T) Specimen Fabrication and Determination of Local Knit Line Axes 

Fabrication of the M(T) specimens involves spraying the foam on a metal plate, it 

rises and eventually a rind forms.  When the foam has settled, the next layer is applied 

until the desired thickness is achieved.  From here, the foam is cut, or machined, from 

this parent block so the knit lines are running in the desired directions.  One of the foam 

samples is shown in Figures 5-12.   

Three M(T) foam test specimens are analyzed in this section.  These samples have 

various orientations and crack inclinations (ϕ values).  The first step in this analysis is to 

determine what the material orientation is for each specimen and we do this by measuring 

                     

Figure 5-12.  From left to right:  front, left, right, and rear sides of the M(T) specimen         

the angles of the knit lines on the specimen’s surface.  Consider Figure 5-13.  We need to 

determine the orientation of the x’, y’ and z’ vectors in order to define the material 

orientation.  This information is used to define the element coordinate system in ANSYS.   

The intersection of two planes is determined by taking the cross-product of their 

normal vectors.  If one wants the ‘trace’ angle on a particular face of the M(T) specimen, 

the dot product can be used.  In our case, the normal to the knit line plane is not known 

beforehand.  Instead we will measure two angles, θ and Γ, and use them to define the knit 
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line plane shown in Figure 5-13.  What we are interested in, is the trace, or intersection, 

the knit line plane makes on the x and y = 0 faces.  Along the x = 0 face, we need the 

angle of the knit line measured from the horizontal, or y-axis.  In this case the knit lines 

on the x = 0 face are relatively straight; θ is approximately zero. On the y = 0 face the 

angle, Γ, is also measured relative to the horizontal, or the x-axis.  Thus, the traces on the 

y and x = 0 faces define the x’ and y’ material axes respectively.  Using the cross product, 

the axis normal to knit line plane is determined, i.e. z’ = x’ × y’. 

 

Figure 5-13.  Determination of knit line plane 

Local Crack Tip Computations 

For crack tip computations involving stresses, there are a few subtleties that should 

be addressed in this section because the material classifications discussed in chapter three 

are in a ‘global’ sense.  When looking at a foam M(T) specimen, one would say it is 

indeed a transversely isotropic material.  However, the post-processing of near-tip 
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stresses requires material properties rotated into a local crack front coordinate system.  

Let us consider an example.  First, assume we have the case one orientation; a material 

rotation (θ = 30o) takes place about the global x axis shown in Figure 5-13.  If the 

inclined crack is oriented in such a fashion so that it rests in the plane of symmetry, the 

out-of-plane and in-plane displacements become decoupled and this is a so-called 

degenerate case described by Hoenig.  His formulation cannot be applied for this special 

case.   As described in chapter three, when this situation arises (crack lying in a symmetry 

plane) the usual isotropic near-tip formulas are utilized.   

 

Figure 5-14.  M(T) model with inclined crack 

Now set ϕ = 15 degrees.  The crack is no longer resting in the symmetry plane.  Let 

us denote this as a ‘general’ case and a rotation is needed to set the properties in the local 

crack front system.  The way the constitutive matrices are transformed depends on how 

they are defined.  If they are in compliance form 
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{ } [ ]{ }Sε σ=           (5-2) 

then the transformation formulas (Ting, 1996) for the elastic constants are 

[ ] [ ][ ][ ]' T
S SS Q S Q=          (5-2) 

where [ ]'S  is the matrix of elastic constants in the rotated system and 

[ ]
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  (5-3) 

The order of the terms in and (5-2) and (5-3) is based on the convention commonly used 

by the composites and elasticity community where the stresses and strains are ordered as  

{σx, σy, σz, τyz, τxz, τxy}T.  If the constitutive matrix is in stiffness form 

{ } [ ]{ }Cσ ε=           (5-4) 

 there is an alternate definition of the [QS] matrix 

[ ]
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  (5-5) 

The transformed elastic constants in stiffness form are therefore determined by 

' [ ][ ][ ]T
C CC Q C Q=          (5-6) 

The two [Q] matrices are related 

[ ] 1 T

S CQ Q −⎡ ⎤= ⎣ ⎦          (5-7) 
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Equations (5-2) or (5-6) allow us to transform the material properties from one Cartesian 

coordinate system to another.  The only information we need for such a transformation is 

the direction cosines of the angles between the coordinate axes where we start, or the 

system where the material properties are initially defined, and the system where we want 

to set the properties. 

The incipient turning angles analyzed in this program use the maximum tangential 

stress theory.  In order to apply it, the first thing we need is the hoop, or σωω, component 

shown in Figure 5-15.   The near-tip stresses derived by Hoenig are in a (x, y, z) 

Cartesian coordinate system.  To obtain the hoop stress, we transform axes, in this case a 

rotation anti-clockwise about the z-axis by ω degrees.  This is done using standard 

transformation equations (Boresi et al 1993).   

 

Figure 5-15.  Cartesian and cylindrical stresses 

Calculating σωω is done via  

2 2 2
2 2 2 2 2 2 2 2 22 2 2xx yy zz yz zx xyωωσ α σ β σ γ σ β γ σ γ α σ α β σ= + + + + +    (5-4) 

Here the α2, β2, γ2 terms are the direction cosines of the angles between the old and new 

axes  
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Now we can calculate the hoop stress at any r and ω of our choosing.  The next step 

is to divide the hoop stress by the effective K, Kp.  We do this because not only are the 

elastic constants direction dependent, but the fracture properties are as well.  The crack is 

predicted to turn in the direction where R is a maximum.  The crack turning angle, 

defined as ωc is shown in Figure 5-16.  Here we have a close-up view of a M(T) 

specimen containing an inclined crack.  The inclined crack offset by angle, ϕ, and the 

direction of incipient turning is denoted by the dashed line. 

 

Figure 5-16.  Crack turning angle 

Let us pause briefly and quickly summarize the procedure needed to compute near-

tip hoop stresses and the predicted turning angle 

• Enter material orientation (denoted by case number in Figure 5-2) into a FE model 
coordinate system 



 

83 

• Run the model and extract the mode I-III SIFs via FRANC3D 

• Rotate material properties into a local crack front coordinate system 

• Compute near-tip stresses using Hoenig’s formulas 

• Transform σyy to σωω via the transformation equations found in Boresi et al 

• Divide σyy by Kp and determine where this ratio is a maximum to predict the 
turning angle, ωc 

  

Table 5-4.  Measured and predicted turning angles (in degrees)  
 ωc (measured) ωc (predicted) ωc (isotropic prediction) 

specimen A 27 32 43 
specimen B  9.7 21 27 
specimen C 12 19 27 

 
For the three test specimens, one of them had a crack inclination of 30 degrees 

(specimen A).  The other two specimens (B and C) had crack inclinations of 10 degrees. 

All three specimens have different material orientations.  Table 5-4 lists the measured and 

predicted incipient turning angles.  The SIFs can vary along the crack front and since the 

free surface can influence the numerical K-solution, the measured and predicted angles 

are computed at the mid-plane.  For comparison’s sake, isotropic predictions for the same 

M(T) geometries are also tabulated.  The isotropic angle is the critical angle, ωc, from 

equation (4-4).  The experimental tests were carried out at 75oF and as such, the elastic 

properties at that temperature are used to predict the turning angle. 

The turning angle was measured using a Brown and Sharpe coordinate measuring 

machine.  These devices are used to inspect various geometries such as cylinder heads or 

gear boxes.  This instrument uses a probe that physically touches the work piece and the 

points are recorded digitally.   In this case, we wish to use the points to define the fracture 

planes.  The angle between these planes is the crack turning angle.  Within each specimen 
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are four fracture surfaces.  The fracture angle was measured at a location near the middle 

and an average of the four values is taken and listed in Table 5-4. 

Specimen A had the best agreement with experiment whereas the other two 

predictions fall somewhere between the isotropic prediction and actual values.  Even 

though both the direction dependence of both the fracture toughness and near-tip stresses 

are accounted for in these predictions, the results presented here still vary by large 

amount.  One possible source for the difference is how the material orientation is defined 

and modeled.  When tasked to predict the turning angle, NASA furnished us with the 

three test specimens but the orientations were not specified beforehand.  These particular 

specimens were initially fabricated to analyze mode mixity, not the effects of material 

orientation.  As such, the orientations of the knit lines vary throughout the specimens.  

When defining the knit line plane, the knit lines (denoted with black dots in Figure 5-12) 

closest to the crack were used to define the orientation, even though the material 

orientation can vary over the specimen. 

Based on the results seen here, it seems that perhaps the crack is seeking a pure 

mode I condition, or that the crack is seeking a direction that is normal to the highest 

principal stress.  In such cases, if a crack, for example, is orientated at 30 degrees relative 

to the horizontal, the crack will turn -30 degrees to it is running straight across or in a 

direction normal to the maximum principal stress.  However, only three specimens are 

analyzed in this section and to some extent, the material orientation can be more carefully 

controlled.  Obviously more samples would have to be analyzed to determine if the 

cracks favor a direction that is normal to the highest principal stress. 
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Influence of Thermal Loads on the SIF Solution 

FRANC3D is very versatile in that it can generate different types of crack meshes 

and also compute a K-solution for both isotropic and fully anisotropic materials but at the 

time of this writing, it is unable to handle problems with a thermal gradient.  This is main 

reason why the DC technique outlined in chapter three is utilized.  To examine the effect 

of a thermal gradient throughout the M(T) specimen we will examine the case two 

orientation with a straight and inclined crack.  This varies the amount of mode mixity and 

two different sets of temperatures are applied to the top and bottom faces of the M(T) 

specimen shown in Figure 5-17. 

In the figures that follow the primary aim is to see how the SIFs change when 

temperatures are applied to the M(T) specimen.  Since the Ks are evaluated using a 

different method, it is useful to compare the results of these two approaches when the 

same set of boundary conditions is applied.  We have results tabulated for several cases at 

room temperature.  Selecting one of them, case 1 for example, we can compare the SIF 

results for a straight crack.  The mid-plane KI at room temperature is 2.01 psi √in.  Using 

the DC method we obtain a value of 1.8 psi √in, a difference of approximately 10%.  The 

quality and density of the mesh does impact the alternate solution presented here.  In 

Banks-Sills et al. (2005) study a similar routine is used to check the M-integral 

computations. Recall that the interaction, or M, integral is used to compute the 

anisotropic K-solution in FRANC3D.  Excellent agreement is shown between their 

various schemes, but much denser meshes are utilized within their FE models. 

In this study it is possible to refine the mesh, perhaps by changing the location of 

the quarter point elements by some degree, but this may not be feasible because there is a 
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node and element limitation within this FE software.  Banks-Sills et al. use 2-D models 

and that allows one to change the mesh density extensively without adding a lot of 

computational cost in terms of physical model size or run time.   

Consider Figure 5-17 with φ = 0 degrees (straight crack).  Here T1 = 0oF and T2 = 

100oF.  The same unit pressure is also applied.  All SIF data from FRANC3D is at room 

temperature (75oF).  The DC method used to compute the SIFs is able to determine these 

parameters at any temperature.  To examine the influence of thermal loads on the K-

solution, the mode I-III SIF for case two at both room temperature and with a thermal 

gradient is plotted in Figure 5-18.  From Table 5-2, the room temperature mid-plane 

value for KI is approximately 2.14 psi √in.  With the prescribed thermal boundary 

conditions, the mid-plane KI drops to 1.44 psi √in; a 33% reduction.   

Also, in a few of the figures, some odd activity takes place near the free surface.  

When looking at Figure 5-18, and the line that pertains the to KI, for the DC solution, the 

third point drops down to approximately 0.946 psi √in.  This happens again in the rest of 

the figures that pertain to the DC solution.  One possible explanation is that the free 

surface along with the boundary conditions is influencing the displacement results at that 

point.    

Sometimes quadratic elements are prone to spurious oscillations.  Within Dhondt’s 

(2002) paper on computing mixed-mode anisotropic SIFs, he performs a smoothing 

operation via an averaging technique to remove the unwanted oscillations.  Likewise Man 

et al (1993) encounter a similar problem when using boundary elements to model a 

contact problem.  Their solution involves removing the higher order elements in the 
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problem area, and replacing them with linear elements instead.  No such averaging 

technique or element modification is employed here. 

There is a marked change in KI, and the other SIFs (KII and KIII) also had fairly 

substantial changes for this particular orientation and geometry.  In this case KIII remains 

small across the crack front.  But KII increases by quite a bit, just like KI does.  KII at the 

mid-plane is roughly -0.04 psi √in at room temperature.  With the addition of temperature 

to this model, KII rises to 0.315 psi √in.  Granted for this geometry and set of loads, KII 

and KIII still remain small when compared to KI.  Let us now consider a case where we 

have a larger gradient applied to the M(T) model in Figure 5-17.  The next set of results 

for this material orientation are for T1 = -200oF and T2 = 100oF.     

In Figure 5-19 we see how the larger thermal gradient impacts the mode I SIF.  

With these boundary conditions, KI, at the mid-plane, is 1.78 psi √in.  But this time, KII 

and KIII both show a fairly large increase after this gradient is applied.  Here KII at the 

mid-plane reaches -0.122 psi √in and KIII = 0.355 psi √in.    

 

Figure 5-17.  Application of thermal loads  
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KI-KIII vs normalized crack front distance
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Figure 5-18.  Room temperature KI-KIII (F3D) vs. KI-KIII (DC) with T1 = 0oF and T2 = 
100oF 
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Figure 5-19.  Room temperature KI (F3D) vs. KI (DC) with T1 = -200oF and T2 = 100oF 
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We see in the above simulations that adding a thermal gradient can impact the 

mode I-III SIFs.  In the first section of this chapter, we looked at SIFs for various 

orientations for straight and diagonal cracks alike.  When the crack is straight (φ = 0), at 

room temperature, the KII and KIII are small compared to KI.  Again using the same 

geometry, when thermal loads are applied to the top and bottom faces of the M(T) model, 

KII and KIII are still small compared to KI, but they do exhibit a change from the room 

temperature reference state.  As we have seen with the room temperature results, KII and 

KIII become more significant when the crack is inclined.  This introduces a degree of 

load asymmetry, or mode mixity.  To further explore the influence of mode mixity along 

with the thermal gradient, let us consider the case two orientation but with a 30 degree 

inclined crack.   
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Figure 5-20.  ϕ = 30 degrees: room temperature KI (F3D) vs. KI (DC) with T1 = 0oF and 
T2 = 100oF 
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Taking a look at KI at the mid-plane in Figure 5-20, KI goes from 1.37 psi √in at 

room temperature to 0.978 psi √in when the thermal gradient is present.  KII and KIII are 

0.545 and 0.188 psi √in at the mid-plane, respectively.  Our final set of plots is again for 

case two with a thirty degree inclined crack, but now T1 = -200oF and T2 = 100oF.  KI at 

the mid-plane is approximately 1.74 psi √in, and KII and KIII are -0.455 psi √in 0.0394 

psi √in, respectively. 
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Figure 5-21.  ϕ = 30 degrees: room temperature KI (F3D) vs. KI (DC) with T1 = -200oF 
and T2 = 100oF   

A final summary of the mid-plane values shown in the tables below.  The 

abbreviations are as follows RT = room temperature, TG1 (T1 = 0oF and T2 = 100oF), 

TG2 (T1 = -200oF and T2 = 100oF).  The values are taken at the mid-plane.  The units for 

KI-KIII are psi √in.   
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Table 5-5.  Summary of mid-plane KI-KII 
 KI (RT) KI (TG1) KI (TG2) KII (RT) KII (TG1) KII (TG2) 

Case 2 (φ = 0) 2.13 1.44 1.78 -0.038 -0.315 -0.122 
Case 2 (φ = 30) 1.37 0.978 1.74 1.39 0.545 -0.455 
 

There are many more ways to apply boundary conditions to this problem.  In the 

above analysis, since the specimen is 12 inches long, the temperature is different than 

room temperature, but still fairly uniform across the crack front. 

Table 5-6.  Summary of mid-plane KIII 
 KIII (RT) KIII (TG1) KIII (TG2) 
Case 2 (φ = 0) 0.049 0.258 0.289
Case 2 (φ = 30) -0.242 0.206 0.0394
 

The information presented in chapter two allows an estimation of the elastic 

constants over wide range of temperatures.  Perhaps in some instances, the flaw can be 

six inches, or more, away from the surface of the ET.  In that case, given the foam’s very 

low thermal conductivity, it is possible to have a temperature over the crack front that 

does not vary substantially.   But over typical acreage sprays the thickness of the 

insulation is roughly three inches.  That is to say, there certainly are conditions where the 

temperature across the crack front will not be uniform.   

To investigate this scenario let us re-use the same M(T) model as before but now 

the gradient will applied to through the thickness, or 1.5 inch dimension.  Once again, the 

case two orientation along with a 30 degree inclined crack.  The TG2 boundary 

conditions are applied and the resulting temperature distribution along the crack front is 

plotted in Figure 5-22.  Here the temperature varies appreciably.  To analyze this 

problem, the elastic constants are evaluated using Figures 2-5 and 2-6.  With those values 

the sixth order characteristic equation is solved at each point, and those roots are used in 

equation in (3-58) to obtain the corresponding Ks along the front. 
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Figure 5-22.  Temperature distribution along the crack front 
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Figure 5-23.  KI-KIII vs. normalized crack front distance; TG2 applied in thickness 
direction 
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The results of this model are shown in Figure 5-23.  Since the temperatures changes 

with respect to crack front distance, the elastic constants also vary which impact the K-

solution.  In some parts of the plot, KII is larger than KI, but the mode I SIF dominates in 

the middle portion of the crack front.  At the mid-plane, KI = 1.92 psi √in.  Comparing 

this to the mid-plane value in Figure 5-21,  KI = 1.74 psi √in; the value increased by 

approximately 10%.   

Summary  

The effect of material orientation on the anisotropic K-solution is examined.  

Seventeen material cases are examined and when the crack is straight we do not see a 

large difference in the mode I SIF even for orientations that depart quite a bit from the 

norm.  The SIFs are also computed for an inclined crack.  From the isotropic relations in 

(5-1) we see that KI should decrease while the remaining modes will increase as the ϕ 

gets larger.  This trend is evident in Figures 5-9 through 5-11.   

Crack turning, at room temperature, was also estimated using both anisotropic and 

isotropic turning assumptions.  In all cases the isotropic calculations predicted a higher 

turning angle than seen within the three samples presented here.  Along with isotropic 

predictions, crack turning estimations that account for the direction dependence of the 

elastic constants and fracture toughness.  Here the predictions are somewhat closer to the 

experimental results, but there is still a sizable difference.  Perhaps one reason why this is 

so, is because when these specimens were fabricated the material orientation was not 

carefully controlled.  This makes the determination of the knit line orientation somewhat 

difficult and this can certainly influence the results because nearly all of the terms in 

Hoenig’s equations depend on the elastic constants. 
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Finally, the effect of temperature is analyzed for the case two orientation.  Several 

different sets of temperature boundary conditions are applied along with the unit 

pressure.  This analysis is conducted for both a straight and inclined crack.  It is here that 

an important distinction can be made between the SIFs evaluated at room temperature 

and those done so with the DC method with the applied temperatures.  This method, 

while simple to use, is not without its deficiencies.  Mid-plane results were compared for 

the case 1 orientation and a difference of 10% between the mode I SIF is encountered.  

Thus, the numbers presented here should not be taken as absolutes and better agreement 

might be obtained by using more refined models.  Within the realm of the material 

orientations examined in this chapter, the mode I SIF did not vary a great deal, but when 

there is a thermal gradient present, significant changes in KI are encountered.  The mode 

II and III SIFs also saw marked changes when the crack is no longer horizontal.  In 

particular KIII, which is relatively small compared to KI and KII, for all of the room 

temperature tests showed large increases particularly when the second set of thermal 

boundary conditions are applied. 

In our last example, the thermal gradient is applied through the thickness where this 

dimension is much smaller than the height.  Such a large gradient over a small thickness 

(1.5 inches) should translate into a thermal gradient that varies over the crack front.  In 

this case the gradient does indeed change substantially and, unlike the prior thermal 

analysis, one can no longer assume a uniform temperature and properties along the crack 

tip.  Thus, at each point the constants are re-evaluated and the resulting Ks are plotted 

against the normalized crack front distance.  In this scenario, KI is the largest at the mid-

plane.  
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CHAPTER 6 
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Conclusions 

Initial investigations of analytical solutions for cracked anisotropic elastic solids 

have existed since the 1960s and the overwhelming majority of literature on this subject 

assumes the crack lies in a symmetry plane where anti-plane decoupling of displacements 

takes place.  Relatively few studies take on the issue of general anisotropy where no 

assumptions are made to simplify the mathematical treatment of such a complex problem.  

In this study, two such methods are presented to provide a solution to obtain near-tip 

stresses for a cracked anisotropic elastic body.  The first of which uses Hoenig’s (1982) 

derivation of an energy release rate for general anisotropy.   This is the preferred choice 

for the computation of SIFs because of the inherent accuracy in this method.  As such, the 

Cornell Fracture Group developed a software package, FRANC3D, which is able to not 

only create crack meshes but also compute an anisotropic K-solution for a variety of 

material orientations: isotropy, monoclinic, and general anisotropy. 

Alternatively, using the DC method, another approach to determining the 

anisotropic K-solution is developed to not only provide another general approach as far 

as material orientation goes, but also one that can provide a solution for problems 

containing both mechanical and thermal loads.  FRANC3D does provide a very versatile 

solution.  But only structures subjected to isothermal conditions can be analyzed with this 

software.  However, the problem that NASA is encountering likely involves the effects of 

a thermal gradient within the foam insulation.  It was intended that these methods would 
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provide NASA with a more complete and fundamental understanding with regard to the 

fracture response of this material.  The various conclusions are summarized below: 

1. Numerical studies conducted at room temperature over a range of material 
orientations showed us that the mode I SIF did not depart substantially from the 
solution that arises from the orientation (case 0) which is present over the vast 
majority of the tank.  The maximum difference in the mode I SIFs between the 
prescribed orientations and the case 0 scenario was shown to be 14%. 

2. The specialized divot testing conducted by NASA gave some insight as to how 
subsurface crack, perhaps emanating from sharp void, could propagate toward the 
surface.  It is here that crack turning analysis could be useful.  While the physics, 
loading, and geometry are quite complicated, there are several theories available in 
the literature that are applicable to this problem since it is one involving brittle 
fracture.  The fracture toughness and elastic constants are direction dependent in this 
type of foam material.  As such, crack turning predictions that account for both of 
these characteristics were performed on three M(T) specimens provided by NASA.  
One of the three analytical predictions had reasonable agreement and while the 
remaining two had a large difference relative to the experimental value, they are 
closer than what isotropic assumptions would predict. 

3. Temperature effects play an important role in this study.  This is among the main 
reasons why NASA chose to initiate an exhaustive series of tests over range of 
temperatures.  A large body of literature is available on foams, covering their 
applications and ways to estimate elastic and fracture response, but few studies deal 
with the harsh environment that this foam is subjected to.  Since the range of 
temperatures involved in this problem is quite large, the effects of thermal gradients 
on the anisotropic K-solution were studied.  Several variables come into play with 
this type of analysis, namely the amount of mode mixity, specimen geometry, 
material orientation, and boundary conditions (be it thermal, mechanical, or a 
combination of both).  Many of the above variables were manipulated and the DC 
method developed was able to produce an anisotropic SIF solution that showed how 
the individual Ks varied over the crack front.  It was shown that the SIFs could 
change dramatically depending on the level of mode mixity and the manner in which 
the thermal boundary conditions are applied.   The results obtained in this study 
represent a quantitative basis for determining the response of this material for a given 
set of boundary conditions using the computational methods outlined in earlier 
chapters. 

Recommendations for Future Work 

One of the primary aims of this study was to help NASA acquire a more 

fundamental understanding of the fracture response of the BX-265 foam insulation.  To 

some extent that was achieved as made evident by the conclusions made in the previous 
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section.  Nevertheless, much remains to further our understanding of such a complex 

material.  What follows is a list of recommended work for future study: 

1. Various models exist in the literature to evaluate the material properties and fracture 
response for foam materials.  Such estimations come from considering the geometry 
of the cells that comprise the cellular material.  While the density does vary over any 
given test specimen, or volume of foam, perhaps a wide range of measurements could 
be taken so an average can be made.  This enables us to compute the relative density 
and this dimensionless parameter is quite useful in estimating the elastic properties, 
even for anisotropic materials. 

2. The crack turning investigation presented here is far from comprehensive.  A more 
complete testing program involving many different orientations and crack inclinations 
should be developed so better criteria can be developed for more accurate predictions.  
Within the three test samples studied, it appears that the crack is seeking a path 
normal to the maximum principal stress.  But with only three specimens on hand, it is 
difficult to generalize results. 

3. While this study made use of simple and standardized geometries, the problem NASA 
is faced with is one that involves a rather complicated geometry.  Divot models can 
be built using FE software and crack turning analysis similar to what was done in this 
program can be performed.  This should provide NASA with a very comprehensive 
representation of the actual problem since anisotropy and temperature effects can be 
accounted for.  Many different geometries and loads could be applied and the 
resulting turning angles could be compared to experiment.  This could lead to 
additional refinements being made to the crack turning theories for anisotropic 
materials. 

4. While the analysis in this study is confined to foam, there is no reason why it cannot 
be extended to other engineering materials that exhibit direction dependent properties.  
For example, perhaps crack turning calculations can be performed on various types of 
aluminum, or other metals where the crystal orientation influences the behavior.  
Additional work can be done to modify the various theories, crack turning for 
example, to account for a plastic zone in front of the crack tip.  Plasticity is neglected 
in this study because the foam is so brittle, but many engineering materials are quite a 
bit more ductile which means that a process, or plastic zone, needs to be accounted 
for.
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APPENDIX 
GENERAL SOLUTION FOR THE PLANE PROBLEM OF A LINEAR ELASTIC 

ANISOTROPIC BODY 

Following Lehkhnitskii (1963), Sih et al (1965), Ting (1996), and Cherepanov 

(1979) the characteristic equation described in chapter three will be derived here.  The 

ensuing discussion is for a ‘plane’ problem, meaning the stresses, strains, and 

displacements have no dependence on the z coordinate.  We start by listing the equations 

of equilibrium 

0     0     0xy y xy yzx xz

x y y x x y
τ σ τ τσ τ∂ ∂ ∂ ∂∂ ∂

+ = + = + =
∂ ∂ ∂ ∂ ∂ ∂

    (A-1) 

Since this a plane problem, the reduced compliance matrix becomes 

3 3

33

' i j
ij ij

S S
S S

S
= −       

The strains and displacements are related to each other  

                  0

       

x y z

xy xz yz

u v w
x y z
u v w w
y x x y

ε ε ε

γ γ γ

∂ ∂ ∂
= = = =
∂ ∂ ∂
∂ ∂ ∂ ∂

= + = =
∂ ∂ ∂ ∂

      (A-2) 

Finally we have the compatibility equations 

2 22

2 2      y xy yzx xz

y x x y y x
ε γ γε γ∂ ∂ ∂∂ ∂

+ = =
∂ ∂ ∂ ∂ ∂ ∂

       (A-3) 

Two arbitrary stress functions (U and F) are introduced as a means to solve the 

equilibrium equations 
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If we substitute (A-4) into the compatibility relations we have a system of equations in 

terms of U and F 

4 3

3 2

0
0

L U L F
L U L F

+ =
+ =

         (A-5) 

Where 
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4 4 4 4 4
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3 3 3 3
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∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
= − +

∂ ∂ ∂ ∂

  (A-6) 

Through equation (A-5) we can eliminate one of the stress functions, F for example, and 

it can be shown that  

( )2
4 2 3 0L L L U− =          (A-7) 

We note that the stress functions are in terms of the x and y coordinates and the 

( )2
4 2 3L L L U− operator is of order of order six.  The solution to this problem will use a 

composite variable, z such that 

( , ) ( )U x y F z=          (A-8) 

z x yμ= +           (A-9)  
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Before moving on with this discussion, let us define the term ‘characteristic equation’ 

with a simple example.  Consider, for a moment, a linear second order homogeneous 

equation such as 

'' ' 0y ay by+ + =          (A-10) 

where a and b are constants, one method (Kreyszig, 1962) used to solve this type of 

differential equation is to assume the solution takes the form 

xy eλ=           (A-11) 

with first and second derivatives 

2'        ''x xy e y eλ λλ λ= =         (A-12) 

If we substitute the derivates into equations (A-12) we get 

2 0a bλ λ+ + =          (A-13) 

This equation is called the characteristic, or auxiliary, equation whose solution is readily 

determined by the quadratic formula.  Here well will obtain two roots that can be real and 

distinct, complex conjugates, or double real.  The above procedure is not just valid for 

second order linear differential equations, but can be applied to another equation of order 

n.   

Continuing on, we now substitute (A-8) into (A-7) which results in 

( ) ( ) ( )2
2 4 3l l lμ μ μ−          (A-14) 

where 
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( ) ( ) ( )
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3 2
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l S S S S S S

l S S S S S S

μ μ μ

μ μ μ μ

μ μ μ μ μ
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= − + + −
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    (A-15) 
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The coefficients in (A-14) are real and the corresponding roots are going to be 

complex and occur in conjugate pairs. The general case of the plane problem makes no 

assumptions that decouple the out-of-plane and in-plane displacements.  This decoupling 

can take place, depending on the type of material one is analyzing.  Sih et al consider 

monoclinic materials.  In this special case, Cherepanov derives an alternate solution 

where a fourth order characteristic equation is developed 

( )4 3 2
11 13 12 33 23 22' 2 ' 2 ' ' 2 ' ' 0S S S S S Sμ μ μ μ+ + + − + =     (A-16) 

2
55 45 44' 2 ' ' 0S S Sμ μ+ + =         (A-17) 

The roots μ1, μ2 and their conjugates are determined from the first equation and μ3 and 

it’s conjugate is obtained by the latter.  Finally, the near-tip solution for such a material is 
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( )31 32 36 33zz xx yy xyS S S Aσ σ σ σ= − + +        (A-19) 

2
11 16 12' ' 'j j jp S S Sμ μ= − +      (A-20) 

 
12 26 22' ' 'j j jq S S Sμ μ= − +      (A-21) 

 
cos sini iQ ω μ ω= +      (A-22) 
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 (A-23) 

 
where C45 and C44 are the elastic constants in stiffness form  
 

Cσ ε=      (A-24) 
 
where  
 

1
ij ijC S −=      (A-25) 
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