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a b s t r a c t

The damage tolerance assessment of complex aerospace structural components requires
the capability of effective modeling of 3D cracks and their associated propagation and
velocity and path under fatigue loads. A 3D mixed mode crack propagation theory is pre-
sented which includes the effect of KI, KII, and KIII, as well as non-proportional loading, elas-
tic and fracture resistance anisotropy, and fracture mode asymmetry (viz. the ability to
transition between competing tensile and shear modes of propagation). A modified strain
energy release rate criterion including the modeling of crack closure is developed and pre-
sented for a representative problem. An elementary, mode I characterization of closure is
used, leaving shear mode closure as fertile ground for further study.

Use of the model is presented for an example problem with steady–vibratory interaction.
� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional fracture simulation has advanced significantly over the last few decades. Early work was focused on
building the framework to appropriately represent cracks in complex geometries, and calculate sufficiently accurate stress
intensity factors [1]. As and crack propagation capability followed, much of the effort went to the development of the frame-
work necessary to model the extending crack with minimal user workload, such as the FRANC3D code developed at Cornell
University [2]. Non-planar crack growth algorithms typically utilized two-dimensional mode I/II crack turning theories that
were well established a generation earlier.

This approach has worked well with a wide range of engineering applications. However, as the technology to model non-
planar cracks in complex geometries has matured, the problem set has become more demanding, requiring propagation cri-
teria that include such things as HCF/LCF interaction, Mixed Non-Proportional Loading (MNPL), fracture mode asymmetry,
and both elastic and fracture resistance anisotropy.

Legacy crack propagation/turning criteria, such as the Maximum Tangential Stress (MTS) criterion [3], assume propor-
tional loading (KII/KI = constant), and predict crack growth along a KII � 0 path. For non-proportional loading, the relative pro-
portions of KI, KII, and KIII vary with time throughout the cycle, and there is no path that enforces KII = 0 during the entire
cycle (not to mention the influence of mode III). Though widely neglected, MNPL can result from any structural situation
wherein steady and cyclic stresses are misaligned, as in the vibrating blade problem illustrated in Fig. 1.
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In order to enable crack growth simulation for this class of problems, two significant advances were required.

1. A theoretical approach to handle crack growth and trajectory under MNPL loading.
2. A reduced-order nonlinear dynamics approach to enable FEM vibration modeling including contact between opposing

crack faces.

Nomenclature

Variables
K stress intensity of lead crack
k asymptotic stress intensity factor at infinitesimal branch tip
Dh crack branch angle
Dhc critical branch angle (the expected angle of crack turning)
KIC, KIIC, KIIIC fracture toughness values for straight crack growth in the indicated mode
K23 resolved shear stress intensity (see Eq. (8))
n unit normal vector to local crack plane
a unit tangent vector to local crack plane normal to crack front (in direction of straight crack growth)
ni, ai components of n and a respectively
Kp fracture resistance ratio associated with the orientation of propagation, relative to a fracture resistance of unity

in a reference orientation
Ki trace fracture resistance ratio of a propagation direction upon the ith principal plane
Kij six principal fracture resistance parameters in 3D, two for each principal plane; subscripts denote the normal

and tangential axes respectively
l, m interpolating exponents
KI eq an equivalent value of mode one stress intensity (that would be equally as critical as a particular set of mixed

mode stress intensities)
K+, K� the extremes of a stress intensity cycle imposed on the crack
Kop stress intensity (in mode indicated by subscript) corresponding to the load at which the crack opens in mode I

(lower case if at branch tip)
DKeff closure-adjusted stress intensity range (lower case if at branch tip)
F1 closure factor applicable to mode I loading (lower case if at branch tip)
F23 closure factor applicable to shear modes (lower case if at branch tip)
f Newman closure function (without subscript)
S stress (with superscripts similar to those used for K)
R stress ratio
a constraint factor
ro flow stress
C compressive stress level sensitivity adjustment parameter
A0, A1, A2, A3 Newman closure coefficients
l coefficient of Coulomb friction
DKeff

I eq equivalent-effective stress intensity range–adjusted for closure, modality, and orientation to give mode I value
that would grow at same rate in reference material orientation

Co crack growth coefficient in NASGRO Equation
b crack growth exponent in NASGRO Equation
Kc thickness adjusted fracture toughness in NASGRO Equation
CP, CN NASGRO threshold equation parameters
a crack length
ao intrinsic crack length for small crack adjustment
Ak, Bk, t, to NASGRO parameters used to adjust fracture toughness for thickness
rys tensile yield stress
Kapplied

I eq equivalent applied (uncorrected for closure) stress intensity range to be used in place of the applied delta K in
the NASGRO Equation

Subscripts
st steady
vib vibratory

Operators
jmax applied to an expression, the maximum value obtained by varying h
MAX{x, y, z} the maximum value among the comma delimited values in brackets
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The current paper will deal exclusively with the first of these requirements, though promising approaches to the second
problem are a separate subject of investigation [4]. Theoretical enhancements have been implemented in the FRANC3D code
as described herein.

2. Theoretical background for crack growth with mixed non-proportional loading conditions

2.1. Maximum stress criteria

Resolving the (isotropic) lead crack stress intensities (KI, KII, KIII), into the asymptotic stress intensities (kI, kII, kIII) associ-
ated with an infinitesimal crack branch at angle Dh, we obtain

kIðDhÞ ¼ rhh

ffiffiffiffiffiffiffiffiffi
2pr
p

¼ cos
Dh
2

KI cos2 Dh
2
� 3

2
KII sin Dh

� �

kIIðDhÞ ¼ rrh

ffiffiffiffiffiffiffiffiffi
2pr
p

¼ 1
2

cos
Dh
2

KI sin Dhþ KIIð3 cos Dh� 1Þ½ �

kIIIðDhÞ ¼ rhz

ffiffiffiffiffiffiffiffiffi
2pr
p

¼ KIII cos
Dh
2

ð1Þ

For the coordinate system illustrated in Fig. 2
A similar solution for 3D anisotropy based on the work of Hoenig [5], will not be further discussed here, but has been

implemented in FRANC3D in much the same manner as the isotropic theory that will now be further discussed.
For proportional loading, the classical Maximum Tangential Stress (MTS) theory, proposed by Erdogan and Sih [3] for iso-

tropic materials, asserts that the crack will grow toward the location of the maximum tangential tensile stress (equivalent to
maximizing kI). By differentiating kI and equating to zero

KII

KI
¼ � sin Dhc

ð3 cos Dhc � 1Þ ð2Þ

or [6]

steady spin load

vibrating 
load

Fig. 1. Vibrating rotor blade resulting in MNPL.

Fig. 2. Reference coordinate system for theoretical development.
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Dhc ¼ 2 tan�1
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðKII=KIÞ2

q
4ðKII=KIÞ

0
@

1
A ð3Þ

where Dhc is the kink angle. This criterion seeks out a mode I crack path. As illustrated in Fig. 3, the maximum tangential
stress theory works well for low ductility materials like PMMA, but fails to predict a transition, observed for 7075-T6 and
2024-T3 aluminum alloys, to a path that is associated with the Maximum Shear Stress (MSS). In these materials, the tran-
sition is sudden, and the crack seems exclusively dominated by either mode I or mode II.

While it should be noted that the data in Fig. 3 is for cracks loaded quasi-statically until the crack begins to tear, as op-
posed to cyclic loading, similar behavior can occur as a result of cyclic loading, as will be shown.

2.2. Fracture mode interaction and asymmetry

Chao and Liu [11] describe the sharp transition behavior as a result of competing failure mechanisms in mode I and mode
II as shown in Fig. 4. According to their hypothesis, the two modes do not interact (see also [12]), and the crack will fail in
Mode I unless

kIðDhÞ
KIC

����
max

<
kIIðDhÞ

KIIC

����
����
max

ð4Þ

where KIC and KIIC are the pure mode fracture toughness values for a straight growing crack, and the subscript ‘‘max’’ denotes
maximizing with respect to the kink angle. For the purpose of further discussion, this criterion will be described as the ‘‘Mod-
al’’ fracture criterion.

Note, however, that the HY130 steel in Fig. 3 behaves in a different manner,2 exhibiting a more gradual transition to a kink
angle of zero, rather than the angle associated with maximum mode II. Thus, both tensile and shear modes of growth appear to
be contributing to failure. This type of behavior correlates well to a Modified Strain Energy Release Rate (MSERR) approach pro-
posed by Kfouri and Brown [13], that suggests a failure locus of the form

kIðDhÞ
KIC

� �2

þ kIIðDhÞ
KIIC

� �2

¼ 1 ð5Þ

For a non-critical load state, the most critical crack growth direction would be obtained by maximizing the left hand side
of this equation with regard to h. A measure of how nearly critical the loading is in terms of an equivalent mode I stress
intensity can be written by solving Eqs. (4) and (5) for KIC respectively and rewriting so that the crack is critical if kI eq = KIC.

LEFM Max stress  stress
Amstutz (1995) 2024-T3, L-T
A (1995) 2024 T3 T Lmstutz  - , -
Hallback & Nilsson (1994) 7075-T6 &   
Maccagno & Knott (1989), PMMA
Maccagno & Knott (1991), HY130 

PMMA, No Transition

Mode I 
(MTS)

Transition

Transition
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T i i
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Fig. 3. Test data of various investigators [7–10], showing transition to shear mode dominated growth for ductile metals at high mode mixities.

2 The HY-130 tests exhibited tearing in a zig-zag microscopic shear mode. The crack turning angles shown for this alloy were read from Maccagno and
Knott’s photographs, and reflect the average trend of the zig-zag line, consistent with our intent. Maccagno and Knott gave quite different values of the turning
angle.
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k1eq ¼ MAX kIðDhÞjmax;
KIC

KIIC
jkIIðDhÞjmax

� 	
ðModalÞ ð6Þ

kI eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kIðDhÞ�2 þ KIC

KIIC

� �2

½kIIðDhÞ�2
s ������

max

ðMSERRÞ ð7Þ

While the modal criterion assumes non-interaction of modes I and II, modes II and III are both shear modes, and can be com-
bined into a resolved shear stress intensity

k23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

II þ k2
III

q
ð8Þ

It seems reasonable to assume that such modes would interact in materials that fail by either the Modal or MSERR cri-
terion, which infers that Eqs. (6) and (7) can be generalized in 3D to

kI eq ¼ MAX kIðDhÞjmax;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KIC

KIIC

� �2

½kIIðDhÞ�2 þ KIC

KIIIC

� �2

½kIIIðDhÞ�2
s ������

max

8<
:

9=
; ðModalÞ ð9Þ

and,

kI eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kIðDhÞ�2 þ KIC

KIIC

� �2

½kIIðDhÞ�2 þ KIC

KIIIC

� �2

½kIIIðDhÞ�2
s ������

max

ðMSERRÞ ð10Þ

The ratios KIC/KIIC and KIC/KIIIC are measures of the fracture mode asymmetry of a material, a term coined by Kfouri describ-
ing the relative fracture resistance of a given material in the different modes. The material dependent transition points ob-
served in the data in Fig. 3 can be correlated to different values of these ratios. While the fracture mode asymmetry is
couched in terms of fracture toughness ratios, the intent is to view these ratios as material parameters in their own right,
that can be used to model the transitions between tensile and shear crack propagation under both monotonic and cyclic
loading conditions.

2.3. Fracture resistance anisotropy

In addition to fracture mode asymmetry, which addresses the relative fracture resistance of a material to the different
fracture modes, there is also the potential for the fracture resistance to vary as a function of crack orientation within the
material. Buczeck and Herakovitch [14] expressed the fracture resistance in 2D as a simple elliptical function. This was gen-
eralized to include a more flexible interpolation function, as shown in Fig. 5, and extended to 3D [15–17] to express the (pure
mode) stress intensity factor at which a crack will propagate in an arbitrary orientation. The crack orientation in 3D is iden-
tified by the normal and tangential vectors (n, a) as illustrated in Fig. 6a.

Assuming three principle planes of material symmetry, each with their own 2D fracture resistance interpolation functions
as shown in Fig. 6b, the stress intensity at which a crack will propagate in the (n, a) orientation is given by

Kpðn; aÞ ¼
n2

1

K2
1

 !‘

þ n2
2

K2
2

 !‘

þ n2
3

K2
3

 !‘
2
4

3
5
� 1

2‘

ð11Þ

Fig. 4. Transition mechanism proposed by Chao and Liu [11].
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where the trace fracture resistance values, Ki of the a vector in fracture resistance space, as illustrated in Fig. 6b, are given
by

KiðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

i

q
a2

j

K2
ij

� �m

þ a2
k

K2
ik

� �m� � 1
2m

ðnon� repeatingÞ ð12Þ

and the Kij are the six principal fracture resistance values in 3D (two for each principal plane), and ni and ai are the
components of the n and a vectors. Depending on processing symmetries, the six principal fracture resistance values may
not all be unique. If they are all equal, and the fitting exponents l = m = 1, the properties are isotropic with regard to fracture
resistance.

For the purposes of the current development, Kp will be considered to be normalized to the fracture resistance in a ref-
erence orientation, likely chosen to be the orientation for which the properties are most fully characterized. By definition,
Kp = 1 in the reference orientation.

Fig. 5. Polar interpolation function for fracture resistance anisotropy in 2D [16,17].

Fig. 6. Physical parameters governing 3D fracture resistance anisotropy [15]. (a) Geometry of crack orientation at a point on an arbitrary crack front and (b)
principle fracture resistance values and traces of crack growth direction a in cardinal planes.

6 R. Pettit et al. / Engineering Fracture Mechanics 102 (2013) 1–14
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2.4. Extension to fatigue crack growth

For application to fatigue crack growth, the six principal fracture resistance parameters and the fracture mode asymmetry
parameters are assumed to be the same for all crack growth in a given material, whether near threshold or approaching the
fracture toughness. This implicitly assumes that, the DKeff vs da/dN curves are parallel regardless of crack orientation or
modality of failure, and any differences can be represented by an appropriate horizontal shift (in Kmax and DKeff). While this
is almost certainly an oversimplification, it represents an attempt to include all these real-world effects in the simplest way
possible.3

When we speak of DKeff in this venue, we are referring to the cyclic stress intensity that actually makes it to the crack tip,
as opposed to the globally applied DK. Among the potential crack tip shielding effects, Mode I plasticity induced crack clo-
sure [18], though still a topic of lively discussion, remains an industry standard approach to account for R-ratio effects. Add
shear modes, and there is the potential for friction to reduce the effective shear cyclic stress intensity. There is ample evi-
dence for shear mode crack tip shielding in the literature [19–22], including evidence that if properly accounted for, effective
(sliding mode closure/shielding excluded) shear mode crack growth curves can be successfully constructed. Nevertheless, no
quantitative theoretical framework has become widely accepted for modeling this behavior.

Despite these difficulties, it was recognized that without taking into account shielding effects in some way, known phe-
nomena could not be predicted. Also, it was desired to at least maintain industry standard capability for mode I problems,
including the ability to predict the effect of R-ratio. It was thus decided to adopt as a baseline the NASGRO crack growth
model formulation [23,24], including the Newman closure equations for Mode I closure, and attempt to extend the equations
in a rudimentary way (by adding Coulomb friction to the closed crack) to account for mixed modes. While it was recognized
that this could potentially have serious shortcomings, it would serve at least as a temporary member in the overall theoret-
ical framework, with the opportunity to improve upon it as better methods become available.

For the purposes of the present formulation, we will again invoke the steady–vibratory scenario of Fig. 1, and introduce
the notation

DK ¼ Kþ � K� ð13Þ

Superscripts refer to the extreme values, max and min, for KI, and to the corresponding extreme values for the shear modes.
That is, the positive sign will correspond to the extreme load state with the most positive KI value, regardless of the sign or
magnitude of the shear modes.

Referring to Fig. 3, there are two possible assumptions that could be made with regard to crack closure:

� Closure occurs in the lead crack only (no infinitesimal kink, resolved stresses only).
� Closure behavior occurs in the infinitesimal kink tip.

With the assumption of kink tip closure, crack growth is evaluated at the infinitesimal kink tip, and Eq. (13) would be
written in lower case k’s, and be evaluated (and the sign convention established) at the kink tip. While capital (lead crack)
notation will be followed on the next few equations, bear in mind that they would be written in lower case (kink tip) nota-
tion for the second assumption above. With that in mind, crack closure will be defined by the mode I component.

DKeff
I ¼ KþI � Kop

I ¼ DKIF1 ð14Þ

where Newman and global closure options as shown in Fig. 7.

F1 ¼

0 if Kþ 6 0
1 for Dkapplied

f ðRÞ for Newman closure
min KþI ;DKIð Þ

DKI
for global closure

8>>>><
>>>>:

ð15Þ

3 Kfouri suggested that the fracture mode asymmetry might also be a function of orientation, but that possibility was excluded in the current formulation.

Fig. 7. Illustration of Newman and global closure.
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The Newman closure function (slightly modified by the additional material parameter C for negative R-ratios) is given by

f ½R� ¼ DKeff
I

DKI
¼ ð1�Sop=SþÞ

ð1�RÞ

where
Sop=Sþ ¼ Ao þ CA1R for � 1 6 R < 0
Sop=Sþ ¼ MAXðAo þ A1Rþ A2R2 þ A3R3;RÞ for R P 0

Ao ¼ ð:825� :34aþ :05a2Þ cos pSþ

2ro


 �h i1
a

A1 ¼ ð:415� :071aÞSþ=ro

A2 ¼ 1� Ao � A1 � A3

A3 ¼ 2Ao þ A1 � 1

a ¼ constraint factor ¼
1:0 plane stress
3:0 plane strain

�
ro ¼ flow stress
R ¼ K�I

KþI

ð16Þ

While DKII and DKIII do not ‘‘close’’ in the sense that mode I does, it can first be postulated that once the kink tip closes in
mode I, a ‘‘stick’’ or ‘‘slip’’ condition exists, altering DKII and DKIII as follows:

DKeff
II ¼ DKIIF23

DKeff
III ¼ DKIIIF23

where

F23 ¼
F1 for stick friction
1 for slip friction

� ð17Þ

For simple sliding friction, F23 should lie between stick and slip values. For (Newman) closure over a small region near the tip
of the crack, the weight functions for tension and shear modes are identical, thus the maximum amount of K23 that can be
dissipated in Coulomb friction by a compressive KI is

Kfrict
23 ¼ lKcomp

I where Kcomp
I ¼ Max 0;Kop

I � KI
� 


ð18Þ

To the degree that the global weight functions for tensile and shear are in agreement, these expressions will also be
approximately true for global closure. Allowing the possibility of closure at both extremes of the cycle,

F23 ¼ Max 1�
l Kcompþ

I þ Kcomp�
I

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DK2

II þ DK2
III

q ; F1

8><
>:

9>=
>; for Coulomb friction ð19Þ

Note that like the stress intensity factors, the closure parameters F1 and F23 may be written in lower case when they refer
to values evaluated at the kink tip.

2.5. Lead crack closure

The lead crack stress intensity factors and R-ratio for lead crack closure may be expressed as

K�I
K�II
K�III

2
64

3
75 ¼

KI

KII

KIII

2
64

3
75

st

�
KI

KII

KIII

2
64

3
75

vib

ð20Þ

RI ¼
K�I
KþI

ð21Þ

The opening stress intensity factors are given by

Kop
I

Kop
II

Kop
III

2
64

3
75 ¼

KþI
KþII
KþIII

2
64

3
75�

F1 KþI � K�I
� 


F23 KþII � K�II
� 


F23 KþIII � K�III
� 


2
64

3
75 ð22Þ

In the special case where KþI < 0;KþI and Kop
I are set to zero for compression–compression loading. The effective crack tip Dk

values are calculated from the lead K+ and Kop values using (1).
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Dkeff
I

Dkeff
II

Dkeff
III

2
664

3
775 ¼

kþI ðDhÞ � kop
I ðDhÞ

abs kþII ðDhÞ � kop
II ðDhÞ

� �
abs½kþIIIðDhÞ � kop

III ðDhÞ�

2
64

3
75 ð23Þ

It is postulated that the crack will grow in the direction corresponding to the maximum growth rate, da/dN, associated with
these Dk values, which will require a numerical search to maximize an appropriate growth parameter. Note that the use of

resolved Dkeff
I ðDhÞ

���
max

as the crack turning criterion with global closure, proportional loading, and positive KI values yields

results equivalent to the MTS crack turning criterion. A more general criterion will be proposed later on.
One area of discomfort evident in the foregoing formulation is the treatment of negative R-ratios. In NASGRO and other

legacy codes, negative K’s are nominally allowed, and act to accelerate the crack growth via negative R-ratios using the New-
man closure equations (an approach with its own shortcomings even for mode I loading). In mixed-mode situations, how-
ever, allowing negative KI values (which unrealistically involves crack faces passing through each other) leads to resolved
mode II components at non-zero h. Yet, neglecting negative KI values neglects the associated acceleration associated with
negative R-ratios.

2.6. Kink tip closure

The lead crack stress intensity factors needed to evaluate kink tip closure are the same as given in Eq. (20), except that for
the reasons just discussed, in the case of a negative R-ratio at the lead crack it was found necessary to enforce global closure
(truncate negative KI at zero) on the KI term before evaluating its contribution to mode II at the kink tip. Negative lead crack
KI’s are allowed to contribute to kI, to preserve the negative R-ratio acceleration for near-mode I scenarios.

Theoretically, the sign convention as to which is the +side of the cycle is not decided until the kink tip stress intensity
factors and ranges are calculated from the lead crack values using (1).

DkI

DkII

DkIII

2
64

3
75 ¼ abs

kþI ðDhÞ � k�I ðDhÞ
kþII ðDhÞ � k�II ðDhÞ
kþIIIðDhÞ � k�IIIðDhÞ

2
64

3
75 ð24Þ

However, by taking the absolute value and by defining the mode I R-ratio as

RIðDhÞ ¼
MIN kþI ; k

�
I

� 

MAX kþI ; k

�
I

� 
 ð25Þ

we rectify the use of the lead crack sign convention (as will be seen, the sign of the shear mode ranges is later squared, and is
thus inconsequential). The kink tip effective stress intensity ranges are then given by

Dkeff
I

Dkeff
II

Dkeff
III

2
664

3
775 ¼

f1DkI

f23DkII

f23DkIII

2
64

3
75 ð26Þ

2.7. Generalized crack propagation criteria

As alluded to earlier, determination of the crack growth direction will require a numerical search to maximize an appro-
priate growth parameter. Following the approach of Buzcek and Herakovitch [14] used successfully in Franc2D [25] for many
years, the crack is postulated to grow in the direction so that the ratio between the crack driving force and the crack growth
resistance is maximized.

Crack driving force ðDhÞ
Crack growth resistence ðDhÞ

� 	
max

ð27Þ

Writing Eqs. (9) and (10) in terms of Dkeff as crack driving forces, and using (11) for the crack growth resistance, we can write
the generalized crack propagation criteria as

Dkeff
I eq ¼ MAX

Dkeff
I

Kp

 !
max

;
1

Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KIC

KIIC

� �2

Dkeff 2

II þ
KIC

KIIIC

� �2

Dkeff 2

III

s0
@

1
A

max

8<
:

9=
; ðModalÞ ð28Þ

And,

Dkeff
I eq ¼

1
Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dkeff 2

I þ KIC

KIIC

� �2

Dkeff 2

II þ
KIC

KIIIC

� �2

Dkeff 2

III

s8<
:

9=
;

max

ðMSERRÞ ð29Þ
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Note that these Dkeff
I eq values are effective in the sense that they are closure adjusted, and equivalent in the sense that they

include all mixed mode effects (to the extent the theory is capable), and can thus be used in conjunction with a standard
mode I closure model. The angle resulting from the maximization, hc, is the predicted kink angle.

2.8. Use of the NASGRO equation

The NASGRO Equation for calculation of the crack growth rate is given as follows [23]:

da
dN
¼ Co Dkeff

eq


 �b 1� DKth
DKapplied


 �p

1� Kmax
Kc


 �q ð30Þ

where we have taken the liberty of including Dkeff
I eq and,

DKth ¼
DK�1 f�ð1þRCP Þð Þ
ð1�A0Þð1�RÞCP

for R P 0

DK�1 f�ð1þRCN Þð Þ
ð1�A0ÞðCP�RCN Þ

for R < 0

8><
>: ð31Þ

DK�1 ¼ DK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

aþ a0

� �s
ð32Þ

KC ¼ KIC 1þ Bke
� Akt

t0


 �20
@

1
A where t0 ¼ 2:5

KIC

rys

� �2

ð33Þ

The problem is that Kmax and DKapplied, as required in Eq. (30), are not defined in a manner sufficiently general to include
mixed mode behavior. It is proposed that Kmax be generalized by using the equivalent value.

kmax
I eq ¼ MAX kþI eq; k

�
I eq

n o
ð34Þ

Where kI eq can be written for the two material behaviors as

kI eq ¼ MAX
kI

Kp

 !
Dh¼Dhc

;
1

Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KIC

KIIC

� �2

k2
II þ

KIC

KIIIC

� �2

k2
III

s0
@

1
A

Dh¼Dhc

8<
:

9=
; ðModalÞ ð35Þ

and,

kI eq ¼
1

Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

I þ
KIC

KIIC

� �2

k2
II þ

KIC

KIIIC

� �2

k2
III

s8<
:

9=
;

Dh¼Dhc

ðMSERRÞ ð36Þ

The DKapplied value to be used to shape the near-threshold regime is more difficult to define with confidence, in part, because
there is some evidence [26] that as threshold is approached (very small scale yielding), the modal transition sometimes dis-
appears (suggesting that the fracture mode asymmetry ratios reduce near threshold). Based on this tentative observation,
one might simply assume that DKth in Eq. (30) is evaluated using (31) with R = RI, and use DkI (calculated with no closure,
thus the same as in (24)) as DKapplied. However, this would require that hc be determined by maximizing (30) instead of (28)
or (29). Such an approach might have merit, driving cracks in a mode I direction near threshold, but could potentially be non-
conservative if shear modes were able to contribute to propagation in the near-threshold regime. On the other hand, one
could conservatively neglect threshold altogether.

For the current implementation it was decided to calculate pure mode thresholds as follows.

DKth
I ¼

Calculated per NASGRO
model with R ¼ RI

DKth
II ¼

KIIc

KIc
DK�1

DKth
III ¼

KIIIc

KIc
DK�1

ð37Þ

The use of the intrinsic (closure-free) thresholds as the basis for estimating shear mode threshold is almost certainly con-
servative. The equivalent applied values may then be calculated.
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Dkapplied
I eq ¼ CRIT

Dkapplied
I

Kp

 !
Dh¼Dhc

;
1

Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DKth

I

DKth
II

 !2

Dkapplied2

II þ DKth
I

DKth
III

 !2

Dkapplied2

III

vuut
0
B@

1
CA

Dh¼Dhc

8><
>:

9>=
>; ðModalÞ ð38Þ

Dkapplied
I eq ¼ 1

Kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dkapplied2

I þ DKth
I

DKth
II

 !2

Dkapplied2

II þ DKth
I

DKth
III

 !2

Dkapplied2

III

vuut
8<
:

9=
;

Dh¼Dhc

ðMSERRÞ ð39Þ

DKth
I and Dkapplied

I eq are substituted for Dkth and Dkapplied in Eq. (30) to calculate the crack growth rate. This method is not ex-
pected to perform well at predicting MPNL threshold behavior, but should serve as a lower bound for the purposes of crack
growth analyses until a better method becomes available.

2.9. Correlation with tension–torsion data

A mixed mode/non-proportional loading test program was undertaken to provide MNPL crack turning data. Specimens
were made of IN718 nickel alloy, machined into a tension–torsion configuration with through-wall cracks, and thus were
predominantly loaded in mode I/II. Tests included specimens with tension and torsion loading in-phase, tension constant
and cyclic torsion, torsion constant and cyclic tension, and tension and torsion loading 180 degrees out-of-phase. Fabrication
and testing were performed by Dr. Greg Swanson and Tarek Sayyah at NASA MSFC, and fractography and K-solution devel-
opment was performed by Highsmith [27] at Georgia Tech. A summary of the initial kink angle data is provided in Table 1.
Some crack tips were observed to bifurcate initially, showing growth in both modes I and II, with one of the kinks subse-
quently becoming dominant, overcoming the other ‘‘transient’’ mode after continued growth. In other cases, a negative kink
would occur on one crack tip, and a positive kink on the other (speaking in crack tip coordinates, so a ‘‘symmetric’’ looking
kink arrangement is actually one positive and one negative). In this case, a different mode achieved dominance at each end.
In all these cases, both dominant and transient angles were recorded when observed, and when more than one like angle
resulted (for example at opposite ends of the same crack), they were averaged in the table. For further detail, see [27].

The data was fit to an MNPL model that captured modal transition behavior and other trends quite well, except possibly
for the out-of-phase data. Observed crack turning angles show excellent correlation with the model, as presented in Fig. 8.
Hollow symbols represent model predictions, and (neighboring) solid symbols are test data, with both primary and second-
ary angles plotted. Note that Highsmith defined the experiments with shear of opposite sign to the data in Fig. 3, resulting in

Table 1
Inco 718 crack kink angle data.

Spec # RI RII RIII KþI KþII KþIII Mean Beq Measured kink angle

Primary Secondary

In-Phase
1 0.6 0.6 0.6 19.16 10.28 5.61 28.22 �37.0
2 0.6 0.6 0.6 19.44 10.67 5.70 28.77 �37.0
8 0.1 0.1 0.1 10.94 10.83 2.17 44.71 �38.0 8.5
9 0.1 0.1 0.1 11.03 10.73 2.76 44.21 �56.5 17

12 0.1 0.1 0.1 16.47 7.17 1.72 23.53 �28.0
16 0.1 0.1 0.1 13.60 8.85 2.38 33.05 �32.5

KI const.
3 1.0 0.6 0.6 17.71 11.09 3.23 26.33 �54.5
4 1.0 �1.0 �1.0 17.78 11.18 2.52 0.0 0.0
6 1.0 0.02 0.02 20.41 10.43 6.38 13.84 4.5

10 1.0 0.1 0.1 10.45 10.37 2.20 25.22 1.0
13 1.0 0.1 0.1 16.13 7.20 1.07 13.30 �46.5 5.5

KII const.
5 0.6 1.0 1.0 21.47 10.76 7.04 33.23 �16.0
7 0.1 1.0 1.0 15.48 15.47 2.43 64.63 �15.5

11 0.1 1.0 1.0 16.24 6.97 1.96 50.06 �10.5

Out-of-phase
17 0.1 10.0 10.0 14.13 0.90 0.28 42.37 �38.0
18 0.1 10.0 10.0 9.96 0.96 0.28 44.81 �64.0 6.0
19 0.1 10.0 10.0 16.08 0.69 0.20 39.68 14.5

Mean Beq ¼ 1
2 Atan KþII

KþI


 �
þ Atan K�II

K�I


 �h i
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‘‘flipped’’ plots. The MTS and MSS curves shown are applicable only to the in-phase data. For non-proportional loading, it is
not clear how to portray theoretical predictions with simple curves, so curves for the other conditions are not included.
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Fig. 8. Correlation of mixed-mode, non-proportionally loaded specimens data with predicted kink angles.
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Fig. 9. Crack face appearance for tensile and shear dominated crack growth [28].
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The ability to correlate the kink angle data was encouraging, and fracture surface examination (Fig. 9) showed a striking
difference in appearance for tensile and shear dominated fracture, correlating to the modes identified by the proposed meth-
od, and thus lending additional credibility to the existence of a fracture mode transition in fatigue crack growth. On the down
side, it was found that the range over which crack turning data was available could be fit fairly comparably using different
model types (e.g. Modal, MSERR) and corresponding parameters, which would predict significantly different growth rates.
Unfortunately, crack growth rates were not measured during these tests, so a unique best fit could not be established for
lifing purposes.

3. Discussion

An implementation of an MNPL crack growth approach has been presented capable of analyzing a constant amplitude
linear cycle between two points. While this is an encouraging advance, significant obstacles remain. Vibratory modes can
exhibit subcycles involving all three fracture modes, particularly when neighboring vibratory modes are active simulta-
neously. Inevitably, a real-world application of the method will require a fully 3D pairing method, which remains to be
defined.

Also, evidence from other authors [21,22,28] suggests that addition of shear modes into an otherwise mode I dominated
cycle can in fact slow or arrest the crack in some regimes, as opposed to speeding it up as would be predicted with positive
fracture mode asymmetry ratios. Further, Tschegg [20] showed that cracks propagating (planar) in pure mode III can slow
down and arrest even when the applied DKIII increases with crack length. As alluded to earlier, these shortcomings are likely
attributable to roughness induced closure associated with shear mode growth, which is not correctly accounted for by the
simple mode I plasticity induced closure/friction method presented herein. It is nevertheless hoped that the framework pro-
vided will remain useful as further advances remedy these deficiencies.

4. Conclusion

A modeling framework proposed for simulation of non-planar cracks with MNPL conditions including crack growth resis-
tance anisotropy and fracture mode asymmetry has been proposed and implemented in FRANC3D.

The modeling framework has been successful at correlating crack kink angles and associated fracture surface morpholo-
gies resulting from a number of disparate test conditions in a nickel alloy in modes I and II, including non-proportional load-
ing, though the test conditions were by no means comprehensive. In particular, the performance of the method with the
addition of mode III has not been evaluated experimentally, and remains a topic of future investigation.

Further, validation of crack growth predictions is not presented, though the method reverts to the well-established NAS-
GRO formulation under pure mode I conditions. While this in great measure makes the method accessible to potential users,
it also comes with a closure model based on mode I, which has been extended in a rather cursory manner to accommodate
mixed-mode and MNPL conditions. It is expected that the fidelity of this closure model will degrade significantly for shear
mode dominated crack growth.

The approach utilizes linear elastic fracture mechanics and is thus subject to the limitation of small scale yielding.

Acknowledgments

The authors wish to acknowledge DARPA/USAF funding for the bulk of the theoretical work under the Prognosis program.
Funding for additional theoretical and implementation work was provided by an AFRL/SBIR program. Test data was provided
by NASA MSFC and Georgia Institute of Technology.

References

[1] Newman Jr JC, Raju IS. Analysis of surface cracks in finite plates under tension or bending loads. NASA TP-1578; 1979.
[2] Wawrzynek PA, Carter BJ, Ingraffea AR. Advances in simulation of arbitrary 3d crack growth using FRANC3D/NG. In: Proceedings of the 12th

international conference on fracture, Ottawa, June 2009.
[3] Erdogan F, Sih GC. On the extension of plates under plane loading and transverse shear. J Basic Engng 1963;85D(4):519–27.
[4] Saito A, Castanier MP, Pierre C, Poudou O. Efficient nonlinear vibration analysis of the forced response of rotating cracked blades. J Comput Nonlinear

Dyn – Trans ASME 2009;4(1):011005-1–011005-10.
[5] Hoenig A. Near-tip behavior of a crack in a plane anisotropic elastic body. Engng Fract Mech 1982;16(3):393–403.
[6] Cherapanov GP. Mechanics of brittle fracture. New York: McGraw-Hill; 1979.
[7] Amstutz BE, Sutton MA, Dawicke DS, Newman JC. An experimental study of CTOD for mode I/mode II stable crack growth in thin 2024-T3 aluminum

specimens. In: Fracture mechanics: 26th Volume, ASTM STP 1256. American Society for Testing and Materials; 1995. p. 257–71.
[8] Hallback N, Nilsson F. Mixed-mode I/II fracture behaviour of an aluminium alloy. J Mech Phys Solids 1994;42(9):1345–74.
[9] Maccagno TM, Knott JF. The fracture behaviour of PMMA in mixed modes I and II. Engng Fract Mech 1989;34(1):;65–86.

[10] Maccagno TM, Knott JF. The low temperature brittle fracture behaviour of steel in mixed modes I and II. Engng Fract Mech 1991;38(2/3):111–28.
[11] Chao YJ, Liu S. On the failure of cracks under mixed-mode loads. Int J Fract 1997;87:201–23.
[12] Dalle Donne C, Doker H. Plane stress crack resistance curves of an inclined crack under biaxial loading. In: Multiaxial fatigue and deformation testing

techniques, ASTM STP 1280. American Society for Testing and Materials; 1997. p. 243–63.
[13] Kfouri AP, Brown MW. A fracture criterion for cracks under mixed-mode loading. Fatigue Fract Mech Engng Struct Mater 1995;18(9):959–69.
[14] Buczek MB, Herakovitch CT. A normal stress criterion for crack extension direction in orthotropic composite materials. J Compos Mater

1985;19:533–44.

R. Pettit et al. / Engineering Fracture Mechanics 102 (2013) 1–14 13



Author's personal copy

[15] Pettit RG. Crack turning in integrally stiffened aircraft structures. PhD Dissertation, Cornell University; 2000. p. 61–7.
[16] High Cycle Fatigue (HCF) Life Assurance Methodologies. Annual technical report, Contract No. RSC99009, delivered by Pratt & Whitney to University of

Dayton Research Institute; 15 April, 2001. p. A-30–A-50.
[17] Kersey RK, DeLuca DP, Pettit RG. Parametric study of fatigue crack threshold and HCF/LCF interaction in single crystal superalloy. Aeromat; 2003.
[18] Newman JC. A crack opening stress equation for fatigue crack growth. Int J Fract 1984;24:R131–5.
[19] Nayeb-Hashemi H, McClintock FA, Ritchie RO. Effects of friction and high torque on fatigue crack propagation in mode III. Metall Trans A

1982;13A:2197–204.
[20] Tschegg EK. Sliding mode crack closure and mode III fatigue crack growth in mild steel. Acta Metall 1983;31(9):1323–30.
[21] Campbell JP, Ritchie RO. Mixed mode, high-cycle fatigue-crack growth thresholds in Ti6–AL–4V. Engng Fract Mech 2000;67:209–49.
[22] Zehnder, Viz, Potdar. Fatigue fracture in plates in tension and out-of-plane shear. Fatigue Fract Engng Mater Struct 2001;23:403–15.
[23] NASGRO V4 manual. Southwest Research Institute. <http://www.nasgro.com>.
[24] Forth SC, Keat WD, Favrow LH. Experimental and computational investigation of three-dimensional mixed-mode fatigue. Fatigue Fract Engng Mater

Struct 2002;25:3–15.
[25] Boone TJ, Wawrzynek PA, Ingraffea AR. Finite element modeling of fracture propagation in orthotropic materials. Engng Fract Mech

1987;26(2):185–201.
[26] Tanaka K, Akinawa Y, Kato T, Mikuriya T. Fatigue crack propagation from a precrack under combined torsional and axial loading. Fatigue Fract Engng

Mater Struct 2005;26:73–82.
[27] Highsmith S. PhD Dissertation, Georgia Institute of Technology; 2009.
[28] Feng M, Ding F, Jiang Y. A study of loading path influence on fatigue crack growth under combined loading. Int J Fatigue 2006;28:19–27.

14 R. Pettit et al. / Engineering Fracture Mechanics 102 (2013) 1–14


