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Presentation Overview

• Motivation and Objective

• Proposed Methodology and Toolset

• Past Research (Aging Aircraft Program)

– Thin-shell fracture simulation

• Current Research (Discrete-source Damage)

– An integrally stiffened wing panel

– 3D simulation of damage propagation

• Preliminary Results

• Summary

• Ongoing Work
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Motivation

Airbus A300 shortly after takeoff

from Baghdad, November, 2003*

Boeing 747-438 en route from

London to Melbourne, July, 2008*

• Need for real-time residual strength predictions of   

damaged structures

• Example application: aircraft structures subject to   

discrete-source damage

* Image from public domain



• Current objective: develop 3D finite element (FE)-

based fracture mechanics methodology to predict 

residual strength of damaged airframe structures

Objective:
Integrated Resilient Aircraft Control (IRAC)

• IRAC objective: enable safe flight and landing after 
adverse event
– Will require interfacing real-time damage assessment tools with control 

system to restrict structural loads
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A Proposed Methodology
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Stiffeners

Idealized 

damage

Skin

Parameterized Damage State

Stiffened 

panel model 

before and 

after impactGeneric 

projectile

(0 ̊ impact)

Characterizing Damage*
Damage models characterize damage 

resulting from projectile impact to 

stiffened panels

Parameterizing Damage
Use damage models to param-

eterize initial damage in terms of 

size, shape, location

6* Hinrichsen et al., AIAA J., 2008



Toolset and Technology:
Geometrically Explicit Crack Growth Simulations

• ABAQUS
– Commercial FE modeling code

• FRANC3D\NG
– 3D fracture analysis code 

– Geometric representation of crack

– Adaptive remeshing scheme
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• Geometric and material nonlinearities

• Shell model with plane strain core1

• EPFM 

• Predicted effects of multi-site damage 

and plastic zone evolution

– CTOAc for crack growth criterion

– Prescribed, self-similar path

Past Research (Aging Aircraft):
Stable Tearing, Residual Strength Predictions

From Chen et al., AIAA J., 2002
1 Core height determined to correlate with results from Dawicke and Newman, ASTM STP 1332, 1998 8
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Predicted MSD link-up and plastic zone evolution 

using shell model with plane strain core

• Geometric and material nonlinearities

• Shell model with plane strain core1

• EPFM 

• Predicted effects of multi-site damage 

and plastic zone evolution

– CTOAc for crack growth criterion

– Prescribed, self-similar path

Past Research (Aging Aircraft):
Stable Tearing, Residual Strength Predictions

From Chen et al., AIAA J., 2002
1 Core height determined to correlate with results from Dawicke and Newman, ASTM STP 1332, 1998



• Predicted effects of T-stress 

and fracture toughness 

orthotropy

• Geometric nonlinearity

• Small-scale yielding 

assumptions (LEFM)

– Modified crack closure integral    

to compute shell SIF’s                   

(KI, KII, k1, k2)
1

– Directional criteria based on max. 

tangential stress theory2

accounting for toughness 

anisotropy3,4

From Chen et al., AIAA J., 2002
1 Viz et al., Int.J. Fract., 1995
2 Erdogan and Sih, J. Basic Eng., 1963
3 Williams and Ewing, Int. J. Fract., 1972
4 Finnie and Saith, Int.J. Fract., 1973 10

Curvilinear crack growth due to bulging in 

pressurized fuselage panel (contour shows 

out-of-plane displacements)

Past Research (Aging Aircraft):
Curvilinear Crack Growth Predictions



• Findings:

– Predicted fracture behavior (and subsequent residual strength predictions) 

depends upon plane strain core height1

– 3D modeling better predicts failure stress

Plane stress

Plane strain

3D
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1 Chen et al., AIAA J., 2002
2 Results from Dawicke and Newman, ASTM STP 1332, 1998

Past Research:
Findings and Conclusions

Experimental and predicted failure loads 

for different size M(T) configurations2

• Contributing Conclusion: 

– Use 3D modeling techniques to capture crack front behavior and obviate 

need for constraint assumptions

Test
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• Material
– Elastic, isotropic

– E = 10,600 ksi

– ѵ = 0.33

• Boundary conditions
– Fixed along wing root 

end

– x-symmetry on sides

• 1.5” initial through-
crack

• Shell edge loading

• Shell/solid modeling 
approach

• LEFM
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Current Work:
Stiffened Wing Panel (Discrete-source Damage)



Shell-solid Modeling 

Approach

• Global shell model

• Contained solid 

model 

– Model to be cracked

– Coupled to shell 

model using MPC’s

• Analysis

– Full model analyzed 

at each increment of 

crack growth
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Current Work:
Stiffened Wing Panel (Discrete-source Damage)



• Crack extension specification:
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• Propagation direction criterion:

• SIF computation:

* For complete derivation see L. Banks-Sills et al., Eng. Fract. Mech. (2006)

Domain of 

integration using 

2 rings of 

elements

Crack plane

Current Work:
Stiffened Wing Panel (Discrete-source Damage)



Step 6

Step 3

Initial 
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Max. Principal 

Stress (ksi)

≈1 million D.O.F.’s

≈ 15 min. wall clock time

2 dual-core processors (typical desktop)

36”

24”

3D FE modeling 
captures

constraint effects
(e.g. crack tunneling 

shown here by step 6)

≈1.85’’

Current Work:
Example Results



Mode I SIF variation along crack front
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Current Work:
Example Results
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Given an initially 

straight crack front, 

the numerical model 

predicts tunneling as 

crack grows while KI

“converges” to be 

constant along the 

crack front



• Overall IRAC objective: enable safe flight and landing in 

adverse conditions

• Methodology is being developed for assessing residual 

strength of airframe structures with discrete-source damage

• Past work (aging aircraft) using plane strain core concept 

indicates need for higher fidelity crack propagation modeling

– Use 3D modeling approach instead

• Methodology presented for performing explicit crack growth 

simulations from discrete-source damage

– Simulations employ ABAQUS/F3DNG framework

• Example using a shell-solid FE modeling technique is 

presented along with preliminary fracture results
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Summary



Ongoing Work
• Inelastic crack growth (e.g. CTOAc)

– Validate with simple geometry and loading

• Low-cycle fatigue crack growth 

– Remaining time to land aircraft

• More complex damage and geometry

– Damage from generic projectile

– Full wing model

• Response surface approach

– Consider neural network or surrogate 

model

• Validate methodology and toolset 
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D.S. Dawicke and M.A. Sutton, Exp. Mech., 1993
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