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DAbstract

The problem of a crack in a general anisotropic material under conditions of linear elastic fracture mechanics (LEFM)
is examined. In Part I, three methods were presented for calculating stress intensity factors for various anisotropic mate-
rials in which z = 0 is a symmetry plane and the crack front is along the z-axis. These included displacement extrapolation,
the M-integral and the separated J-integrals.

In this study, general material anisotropy is considered in which the material and crack coordinates may be at arbitrary
angles. A three-dimensional treatment is required for this situation in which there may be two or three modes present. A
three-dimensional M-integral is extended to obtain stress intensity factors. It is applied to several test problems, in which
excellent results are obtained. Results are obtained for a Brazilian disk specimen made of isotropic and cubic material. Two
examples for the latter are examined with material coordinates rotated with respect to the crack axes.
� 2006 Published by Elsevier Ltd.
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R

C

O1. Introduction

In part I of this study [1], the problem of a crack in an anisotropic material was studied for the case in which
x3 = z = 0 is a plane of material symmetry. The crack coordinates were defined as x, y and z; whereas, the
material coordinates were xi, i = 1,2,3 (see Fig. 1).
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Nomenclature

‘ðNÞx ðzÞ virtual crack extension in the x-direction (see Fig. 2)
mij defined in general in Eqs. (17)–(19)
nx normal to the crack front (see Fig. 2)
pi, i = 1,2,3 eigenvalues of the compatibility equations with positive imaginary part
qi virtual crack extension
r radial crack tip coordinate
tij matrix of direction cosines between the material and crack tip coordinate systems
ui, i = x,y,z displacement vector with reference to the crack tip coordinate system
xi, i = 1,2,3 material coordinate system
x, y, z local crack tip coordinate system
Ax area of the virtual crack extension in the plane ahead of the crack (see Eq. (35))bC contracted stiffness matrix in the material coordinates
GðzÞ energy release rate along the crack front
I and R represent the imaginary and real parts of a complex quantity, respectively
Kj, j = I, II, III stress intensity factors
LN length of an element along the crack front (see Fig. 2)
M(1,2a) M-integral with 1 the desired solution and 2a, a = a,b,c the auxiliary solution
N element number along the crack front (see Fig. 2)
Nij 3 · 3 matrix in Eq. (14)
N�1

ij inverse matrix of Nij

Qi defined in Eq. (13)
Rs 6 · 6 matrix for rotating the contracted compliance matrix
Rc 6 · 6 matrix for rotating the contracted stiffness matrix
Sij, i, j = 1, . . . , 6 contracted compliance matrix
S0ij reduced compliance matrix (see Eq. (7))bS contracted compliance matrix in the material coordinates
V volume within which the conservative integral is calculated (see Fig. 2)
W strain energy density
W(1,2a) the interaction strain energy density defined in Eq. (36)
dij Kronecker delta
�ij, i, j = x,y,z strain tensor
ki defined in Eq. (16)
rxx, ryy, rxy, rzx, rzy stress components with reference to the crack tip coordinate system
h polar crack tip coordinate
hx, hy, hz Euler angles, defined before Eq. (45)

Fig. 1. Crack tip coordinates.
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The first term of the asymptotic expressions for the stress and displacement fields for anisotropies in which
z = x3 = 0 is a symmetry plane were used in the derivation of three methods for calculating stress intensity
factors: displacement extrapolation, M-integral and separated J-integrals. It was shown that the energy based
conservation integrals were most accurate. The separated J-integrals were only valid for particular symme-
tries. Hence, they may not be employed in this part of the investigation.
Please cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
gineering Fracture Mechanics (2006), doi:10.1016/j.engfracmech.2006.07.005
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Instead, the M-integral is extended for the general anisotropic case and presented in Section 2. In Section 3,
some numerical examples are described. First, three benchmark problems are considered in which the material
is taken to be isotropic and cubic. The material axes for the cubic material are taken to be aligned and rotated
with respect to the crack axes. The exact displacement field is used in the context of the finite element method
to assess numerical error. Various virtual crack extensions are explored. It is seen that the M-integral produces
accurate results. Next, a thick plate containing a central crack is analyzed for various relative positions of a
cubic material. Finally, the Brazilian disk specimen also composed of isotropic and cubic material, containing
a central crack rotated with respect to the loading axis is discussed.

To begin with, the first term of the asymptotic expressions for the stress and displacement fields originally
derived by Hoenig [2] are presented. They are given by
Plea
gine
T
E
D

P
R

O
Orxx ¼

1ffiffiffiffiffiffiffi
2pr
p R

X3

i¼1

p2
i N�1

ij Kj

Qi

" #
; ð1Þ

ryy ¼
1ffiffiffiffiffiffiffi
2pr
p R

X3

i¼1

N�1
ij Kj

Qi

" #
; ð2Þ

rxy ¼ �
1ffiffiffiffiffiffiffi
2pr
p R

X3

i¼1

piN
�1
ij Kj

Qi

" #
; ð3Þ

rzx ¼
1ffiffiffiffiffiffiffi
2pr
p R

X3

i¼1

pikiN�1
ij Kj

Qi

" #
; ð4Þ

rzy ¼ �
1ffiffiffiffiffiffiffi
2pr
p R

X3

i¼1

kiN�1
ij Kj

Qi

" #
; ð5Þ

ui ¼
ffiffiffiffiffi
2r
p

r
R
X3

j¼1

mijN�1
jl KlQj

" #
; ð6Þ
R
E
Cwhere R represents the real part of the quantity in brackets, two repeated indices in Eqs. (1)–(6) obey the sum-

mation convention from 1 to 3, the coordinates x, y, and z refer to the crack coordinates in Fig. 1, r and h are
polar coordinates in the x � y plane, Kj represents the stress intensity factors KI, KII and KIII. The contracted
compliance matrix Sij is rotated to the crack tip coordinate frame. The indices that relate the tensor and vector
forms of the stresses and strains and the full and contracted versions of the stiffnesses and compliances are
taken such that 11! 1, 22! 2, 33! 3, 23! 4, 13! 5 and 12! 6. Plane deformation is assumed, so that
�zz = 0 to first order; as a result, the reduced compliance matrix is used in the analysis. The components are
given by
 R
S0ij ¼ Sij �
Si3S3j

S33

; ð7Þ
O
where i, j = 1,2,4,5,6, S0ij is symmetric and
CS0i3 ¼ S03i ¼ 0: ð8Þ
NThe parameters pi, i = 1, 2, 3, are the eigenvalues of the compatibility equations with positive imaginary
part. These are found, in general, from the characteristic sixth order polynomial equation
Ul4ðpÞl2ðpÞ � l2
3ðpÞ ¼ 0; ð9Þ
where
l2ðpÞ ¼ S055p2 � 2S045p þ S044; ð10Þ
l3ðpÞ ¼ S015p3 � ðS014 þ S056Þp2 þ ðS025 þ S046Þp � S24; ð11Þ
l4ðpÞ ¼ S011p4 � 2S016p3 þ ð2S012 þ S066Þp2 � 2S026p þ S022: ð12Þ
se cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
ering Fracture Mechanics (2006), doi:10.1016/j.engfracmech.2006.07.005



67
68
7070

71
72

7474

75

7777

78
79

8181

82
83

8585

86
87

88

89
90
91
92
93
94
95
96
97
98
99

100

102102

103
104
105
106
107
108
109
110

4 L. Banks-Sills et al. / Engineering Fracture Mechanics xxx (2006) xxx–xxx

EFM 2353 No. of Pages 15, Model 3+

28 August 2006 Disk Used
ARTICLE IN PRESS
The expression Qi is given by
Plea
gine
Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ pi sin h

p
: ð13Þ
The matrix
Nij ¼
1 1 1

�p1 �p2 �p3

�k1 �k2 �k3

0B@
1CA; ð14Þ
F

its inverse is given by
O
O

N�1
ij ¼

1

jN j

p2k3 � p3k2 k3 � k2 p2 � p3

p3k1 � p1k3 k1 � k3 p3 � p1

p1k2 � p2k1 k2 � k1 p1 � p2

0B@
1CA: ð15Þ
The parameters ki are given by
 R

ki ¼ �
l3ðpiÞ
l2ðpiÞ

; ð16Þ
P
where i = 1,2,3. The parameters mij in Eq. (6) are given by
Dm1i ¼ S011p2
i � S016pi þ S012 þ kiðS015pi � S014Þ; ð17Þ

m2i ¼ S021pi � S026 þ S022=pi þ kiðS025 � S024=piÞ; ð18Þ
m3i ¼ S041pi � S046 þ S042=pi þ kiðS045 � S044=piÞ: ð19Þ
O
R

R
E
C

T
E

It may be noted that the expressions in (16)–(19) appear to rely on the Lekhnitskii formalism [3], although
there are differences with Lekhnitskii for k3 and m3i. These expressions developed in [2] are correct.

2. The M-integral for calculating stress intensity factors

In this section, a three-dimensional M-integral is derived for calculating stress intensity factors of a straight
through crack in a body composed of general anisotropic materials. The conservative M-integral was first pre-
sented in [4] for mixed-mode problems in isotropic material and in [5] for anisotropic materials in which
x3 = z = 0 is a symmetry plane.

Here, the crack is at an arbitrary angle to the material axes of a general anisotropic material. As mentioned
earlier, crack coordinates are defined as x, y and z as shown in Fig. 1; the x-axis is in the plane of the crack and
perpendicular to the crack front, the y-axis is perpendicular to the crack plane and the z-axis is along the crack
front. The material coordinates are given by xi (i = 1,2,3). The compliance matrix Sij is rotated to coincide
with crack coordinates when used in the expressions for the stress and displacement fields in Eqs. (1)–(6).

For this geometry and material, a three-dimensional treatment is required. The three-dimensional J-integral
was first derived in [6] with another derivation presented in [7]. It may be written as
CZ LN

0

GðzÞ‘ðNÞx ðzÞnxdz ¼
Z

V
rij

oui

ox1

� W d1j

� �
oq1

oxj
dV ; ð20Þ
U
N

where G is the energy release rate along the crack front, d‘ ¼ ‘ðNÞx nx is the normalized virtual crack extension
orthogonal to the crack front, nx is the unit normal to the crack front in the x-direction, N represents element
N along the crack front, and LN is its length (see Fig. 2a). Indicial notation is used on the right hand side of
Eq. (20). The strain energy density W = 1/2rij�ij and dij is the Kronecker delta. The subscripts i and j are used
to represent x, y and z; that is, rij, �ij and ui represent the stress, strain and displacement components written in
the crack tip coordinate system. Volume V reaches from the crack tip to an arbitrary outer surface S, as illus-
trated in Fig. 2b. On S, q1 is zero; it takes on the value ‘x along the crack front and is continuously differen-
tiable in V (for details, see [7]).
se cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
ering Fracture Mechanics (2006), doi:10.1016/j.engfracmech.2006.07.005
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Fig. 2. (a) Virtual crack extension d‘ for a through crack denoted on the finite element mesh. (b) In-plane volume V and outer surface S.
Note that the integral begins at the crack front.
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On the other hand, by means of the crack closure integral, the relationship between the energy release rate
and the stress intensity factors may be written as [2]
Plea
gine
O

G ¼ � 1

2
fKIIðm2iN�1

ij KjÞ þ KIIIðm1iN�1
ij KjÞ þ KIIIIðm3iN�1

ij KjÞg; ð21Þ
D
P
Rwhere I represents the imaginary part of the expression in parentheses and summation should be applied to

repeated indices.
The energy release rate G, as well as the stress intensity factors are taken to be piecewise constant along the

crack front. The M-integral is calculated within a volume of elements orthogonal to the crack front assuming
these unknowns as constant values.

The individual stress intensity factors are obtained from the M-integral. As is usual for this derivation, two
equilibrium solutions are superposed; this is possible since the material is linearly elastic. Thus, define
T
Erij ¼ rð1Þij þ rð2Þij ; ð22Þ

�ij ¼ �ð1Þij þ �
ð2Þ
ij ; ð23Þ

ui ¼ uð1Þi þ uð2Þi : ð24Þ
CThe stress intensity factors associated with the superposed solutions are
R
EKI ¼ Kð1ÞI þ Kð2ÞI ; ð25Þ

KII ¼ Kð1ÞII þ Kð2ÞII ; ð26Þ
KIII ¼ Kð1ÞIII þ Kð2ÞIII : ð27Þ
RSolution (1) is the sought after solution; the fields are obtained by means of a finite element calculation. Solu-
tion (2) consists of three auxiliary solutions which are derived from the first term of the asymptotic solution in
Eqs. (1)–(6). The stress intensity factors of solutions (2a), (2b) and (2c) are given, respectively, by
OKð2aÞ

1 ¼ 1; Kð2aÞ
II ¼ 0; Kð2aÞ

3 ¼ 0; ð28Þ
Kð2bÞ

1 ¼ 0; Kð2bÞ
II ¼ 1; Kð2bÞ

3 ¼ 0 ð29Þ
Cand
Kð2cÞ
1 ¼ 0; Kð2cÞ

II ¼ 0; Kð2cÞ
3 ¼ 1: ð30Þ
N

Substitution of Eqs. (28)–(30) into Eq. (21) with the usual manipulation for the M-integral (see, for example
[4,5,8]) leads to
 U

M ð1;2aÞ ¼ � 1

2
f2Kð1ÞI Iðm2iN�1

i2 Þ þ Kð1ÞII Iðm1iN�1
i1 þ m2iN�1

i2 Þ þ Kð1ÞIII Iðm2iN�1
i3 þ m3iN�1

i1 Þg; ð31Þ

M ð1;2bÞ ¼ � 1

2
fKð1ÞI Iðm2iN�1

i2 þ m1iN�1
i1 Þ þ 2Kð1ÞII Iðm1iN�1

i2 Þ þ Kð1ÞIII Iðm1iN�1
i3 þ m3iN�1

i2 Þg; ð32Þ

M ð1;2cÞ ¼ � 1

2
fKð1ÞI Iðm2iN�1

i3 þ m3iN�1
i1 Þ þ Kð1ÞII Iðm1iN�1

i3 þ m3iN�1
i2 Þ þ 2Kð1ÞIII Iðm3iN�1

i3 Þg: ð33Þ
se cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
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In addition, manipulation of Eq. (20) leads to
Plea
gine
M ð1;2aÞ ¼ 1

Ax

Z
V

rð1Þij
ouð2aÞ

i

ox1

þ rð2aÞ
ij

ouð1Þi

ox1

� W ð1;2aÞd1j

" #
oq1

oxj
dV ; ð34Þ
where a = a, b and c in succession, nx = 1,
Ax ¼
Z LN

0

‘ðNÞx ðzÞdz; ð35Þ
F

and the interaction energy density
 OW ð1;2aÞ ¼ rð1Þij �
ð2aÞ
ij ¼ rð2aÞ

ij �
ð1Þ
ij : ð36Þ
OValues of the stress, strain and displacement fields obtained from a finite element calculation are substituted
into Eq. (34) as solution (1), together with each auxiliary solution to compute three values of M(1,2a). Using
these values in the left hand sides of Eqs. (31)–(33) leads to three simultaneous equations for KI, KII and KIII.
R
C
O

R
R

E
C

T
E
D

P3. Numerical calculations

In this section, results from several calculations are presented. First, three benchmark cases are described in
Section 3.1 to examine different virtual crack extensions, as well as to demonstrate the excellent results
obtained by means of the M-integral. In these cases, the first term of the asymptotic displacement field with
different values for the stress intensity factors is prescribed on one or two elements. In Section 3.2, finite ele-
ment analyses are carried out on a thick, large plate containing a central crack. Tensile and in-plane shear
stresses are imposed separately. Stress intensity factors are computed and compared to plane strain values.
Then, in Section 3.3, solutions are presented for a Brazilian disk specimen composed of cubic material rotated
with respect to the crack plane and loaded with two different angles. For comparison purposes, an isotropic
Brazilian disk specimen is also examined.

The stress intensity factors obtained are average values along the crack front within each element or a pair
of elements. Therefore, the results are not continuous through the thickness. In the graphs however, either the
mid-point of each element or an element corner is taken as the z-coordinate, so that the curves remain smooth.

In this study, prismatic elements are employed about the crack front as shown in Figs. 3a and b for one or
two rings of elements, respectively. The second ring consists of brick elements. The relation between the crack
front coordinates and the material coordinates is presented in the Appendix.

For a through crack, two types of virtual crack extensions are examined. The first is the parabolic extension
shown in Fig. 4a. This is denoted as qð1Þ1 and carried out in one layer of elements along the crack front as
shown in Fig. 3a or b. The second type of virtual crack extension is shown in Fig. 4b. This is denoted as
qð2Þ1 and carried out in two element layers along the crack front. At the surface of the body, two other virtual
crack extensions may be considered. At the front and back surfaces of the body, the virtual crack extensions
are illustrated, respectively, in Figs. 4c and d, and denoted as qð3Þ1 and qð4Þ1 . Each is carried out in one layer of
elements.
U
N

Fig. 3. Domain of integration using (a) one or (b) two rings of elements.

se cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
ering Fracture Mechanics (2006), doi:10.1016/j.engfracmech.2006.07.005
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3.1. Prescribed displacement tests

An initial series of tests are performed to verify implementation of the M-integral. In these tests, finite ele-
ment analyses are not carried out. Rather, nodal displacements for all elements participating in the M-integral
evaluation are determined from Eq. (6). Three cases are considered in which one of the stress intensity factors
is assumed unity and the other two are assumed zero. The displacements are used to determine the stress and
strain components by means of a finite element formulation and substituted into Eq. (34) for the M-integral.
The stress intensity factors found by solving Eqs. (31)–(33) simultaneously are compared to the prescribed
values.

The purpose of these tests is two-fold. First, as verification; if the M-integral evaluation is encoded cor-
rectly, then the computed stress intensity factors should be close to the prescribed values. Second, the differ-
ence between the prescribed and computed values gives a quantitative assessment of the ‘intrinsic’ error in the
computations and an indication of the relative performance of the differing q1 functions and the number of
element rings. Intrinsic errors are those which arise from the approximate numerical techniques used to cal-
culate the integrals.

Three material types are considered: isotropic, cubic with x3 = z = 0 a symmetry plane, and general aniso-
tropic. The stress intensity factors obtained for isotropic material do not depend upon material properties. The
cubic material chosen for study is used in jet engine turbine blades. It is a single crystal, nickel-based super-
alloy (PWA 1480/1493) described in a NASA report [9]. The material properties are presented in Table 1.

Results are presented in Table 2 for isotropic material and the four crack extensions and one or two rings. It
may be observed for the KI = 1 case that the two other stress intensity factors are zero when either one or two
U
N

C
O

R
R

Table 1
Cubic mechanical properties for PWA 1480/1493 [9]

E11 = E22 = E33 = 15.4 · 106 (psi)
l12 = l23 = l13 = 15.7 · 106 (psi)
m12 = m23 = m13 = 0.4009

Table 2
Computed stress intensity factors for prescribed nodal displacements: isotropic material

Rings qðnÞ1 Prescribed KI = 1 Prescribed KII = 1 Prescribed KIII = 1

n KI KII KIII KI KII KIII KI KII KIII

1 1 0.969 10�17 10�17 10�16 0.970 10�17 10�18 10�18 0.956
2 1.011 10�17 10�19 10�17 1.005 10�18 10�18 10�18 1.007
3 1.011 10�18 0 10�17 1.005 0.054 10�18 0.085 1.007
4 1.011 10�17 10�18 10�17 1.005 �0.054 10�18 �0.085 1.007

2 1 0.997 10�16 10�17 10�16 0.999 10�17 10�17 10�18 0.999
2 0.997 10�18 0 10�17 0.999 10�18 10�18 10�18 0.999
3 0.997 10�17 10�17 10�17 0.999 0.153 10�17 0.251 0.999
4 0.997 10�17 10�17 10�17 0.999 �0.153 10�17 �0.251 0.999

Please cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
gineering Fracture Mechanics (2006), doi:10.1016/j.engfracmech.2006.07.005
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rings are used in the integration scheme with any of the virtual crack extensions. With two rings, all of the
stress intensity factors which are prescribed to be unity converge to the same value near unity for each of
the virtual crack extensions. However, the mode two and three stress intensity factors KII and KIII are not zero,
respectively, when KIII and KII are prescribed to be unity and the crack extension is given in either Figs. 4c or
d. That is, the non-symmetric virtual crack extension for the front and back surfaces of the body, do not lead
to the correct results. It may also be noted that the parabolic virtual crack extension in Fig. 4a leads to less
accurate results when integrating in one ring only.

For the cubic material in which the material and crack axes coincide, results are exhibited in Table 3. The
behavior obtained for the cubic material is identical to that obtained for the isotropic material. When the vir-
tual crack extension qð1Þ1 is employed with one integration ring, the results for the dominant stress intensity
factor deteriorates in comparison to those for the other virtual crack extensions. For two integration rings,
the results for the dominant stress intensity factors are identical for all virtual crack extensions to many more
significant figures than shown. They are also more accurate as compared to that obtained with one integration
ring. For the stress intensity factors which are prescribed to be zero, qð3Þ1 and qð4Þ1 provide results which are not
as close to zero as those found with the other two crack extensions. Interestingly, they are opposite in sign; so
that when qð2Þ1 is used, their sum is obtained which is zero. This may also be observed for the isotropic material
in Table 2.

Finally, results for a more general case are shown in Table 4. In this case, the same cubic material whose
properties are presented in Table 1 is used. Here however, the material axes do not coincide with the crack
axes. To this end, three rotations, given as Euler angles, are used to obtain the compliance matrix in the crack
axes. These are hz = hx = hy = p/4 (see the Appendix for the definition of the Euler angles used in this inves-
tigation). The components of the 3 · 3 matrix of direction cosines are given in Eq. (45). The compliance matrix
is full although some of the 21 components are either equal or opposite in sign. Here, it may be observed that
again using only one integration ring and the parabolic virtual crack extension leads to the least accurate
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E

Table 3
Computed stress intensity factors for prescribed nodal displacements: cubic material

Rings qðnÞ1 Prescribed KI = 1 Prescribed KII = 1 Prescribed KIII = 1

n KI KII KIII KI KII KIII KI KII KIII

1 1 0.953 10�9 10�18 10�8 0.962 10�14 10�18 10�14 0.954
2 1.008 10�10 10�18 10�8 1.007 10�14 10�19 10�14 1.007
3 1.008 10�10 10�10 10�8 1.007 0.003 10�9 0.003 1.007
4 1.008 10�10 10�10 10�8 1.007 �0.003 10�9 �0.003 1.007

2 1 1.003 10�10 10�17 10�8 1.001 10�14 10�18 10�14 1.000
2 1.003 10�10 10�19 10�8 1.001 10�14 10�19 10�14 1.000
3 1.003 10�10 10�19 10�8 1.001 0.006 10�9 0.009 1.000
4 1.003 10�10 10�9 10�8 1.001 �0.006 10�9 �0.009 1.000

Table 4
Computed stress intensity factors for prescribed nodal displacements: cubic material with hx = hy = hz = p/4

Rings qðnÞ1 Prescribed KI = 1 Prescribed KII = 1 Prescribed KIII = 1

n KI KII KIII KI KII KIII KI KII KIII

1 1 0.960 0.007 0.001 0.007 0.965 �0.003 0.004 �0.005 0.959
2 1.009 0.001 10�4 0.001 1.006 10�5 10�4 10�4 1.007
3 1.007 �0.005 0.002 �0.003 0.993 0.033 �0.011 0.086 1.020
4 1.012 0.007 �0.002 0.005 1.019 �0.033 0.012 �0.086 0.994

2 1 0.998 �0.005 �0.001 �0.005 0.999 0.002 0.001 0.005 0.999
2 0.998 �0.005 �0.001 �0.005 0.999 0.001 �0.003 0.004 0.998
3 0.991 �0.022 0.005 �0.017 0.961 0.096 �0.034 0.259 1.039
4 1.006 0.011 �0.007 0.007 1.037 �0.093 0.029 �0.252 0.957
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results for the dominant stress intensity factor. With two rings, both the parabolic and double triangular vir-
tual crack extension lead to nearly the same results. For this case, the stress intensity factors which are pre-
scribed to be zero are much less accurate than that for the isotropic and cubic materials. Moreover, there
is a further deterioration of these results when obtained with qð3Þ1 and qð4Þ1 .

From this sample of results, as well as experience with other numerical experiments, the latter two virtual
crack extensions are not recommended. It may also be pointed out, that these crack extensions are used only at
the surfaces of a body. At that corner point, the character of the singularity changes and a value for the stress
intensity factor obtained in this way is not relevant.

3.2. Thick plate analysis

In this section, a thick plate, illustrated in Fig. 5, is considered. Since W/a = 15 and h/W = 1, the plate can
be thought of as being infinite in the x–y plane; the thickness B/W = 1. With this thickness, plane strain con-
ditions are approximated in the center of the plate. Boundary conditions to prevent rigid body motion are
shown in Fig. 6a. The plate is loaded in tension as shown in Fig. 6b, and in pure in-plane shear as shown
in Fig 6c.

The model and meshes were generated with FRANC3D [10]. The finite element analysis was performed
with ANSYS [11]. The computed nodal point displacements were read back into FRANC3D where the M-
integral was evaluated to determine the stress intensity factors. The virtual crack extensions in Figs. 4a and
b were employed using two element rings as shown in Fig. 3b.

The mesh shown in Fig. 7a was used for all analyses. A detail of the crack tip region is illustrated in Fig. 7b.
The mesh contains a total of 81,502 elements which are predominantly 10 noded tetrahedral elements. There
are 15 noded quarter-point wedge elements around the crack front with two rings of twenty noded brick ele-
ments surrounding the crack tip elements. Thirteen noded pyramid elements serve as a transition from the
brick elements to tetrahedral elements, as well as to the 20 noded outer bricks in the remainder of the mesh.
There are 68 elements through the specimen thickness along the crack front. There is a total of 121,490 nodal
points.

Four material cases are examined. In the first case, the material is taken to be isotropic with Young’s
modulus E = 15.4 · 106 psi and Poisson’s ratio m = 0.4009. These are the same values as those for the cubic
material. The material properties for a cubic material in Table 1 are used for three other cases. These include:
U
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O

R
R

E

Fig. 5. Thick plate geometry containing a central through crack.

Fig. 6. (a) Simply supported boundary conditions. (b) Applied tensile stress and (c) in-plane shear stress used in the analyses.
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Fig. 7. (a) The mesh used for the thick plate analyses containing 121,490 nodal points. (b) A detail of the thick plate mesh in the crack
region.
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R(1) the material coordinates aligned with the crack axes, (2) hy = p/4 (the material appears transversely isotro-

pic with the symmetry plane y = 0) and (3) hz = hx = hy = p/4. The latter is the same material used in the pre-
vious section where the compliance matrix is full, although there are relations between some of the
components. It will be denoted here as triclinic.

Results for applied tension are presented in Fig. 8. The abscissa is the normalized coordinate along the
crack front z/B. The values of the stress intensity factors are normalized by the two-dimensional plane strain
value for the infinite plate of KI ¼ r

ffiffiffiffiffiffi
pa
p

. It may be observed in Fig. 8a that within the central portion of the
plate, the normalized bK I for each case approaches unity. There is a small divergence for the transversely iso-
tropic material (hy = p/4). Possibly the plate is not sufficiently large to be infinite for this case. For the isotro-
pic plate and the plates with hy = 0 and hy = p/4, the results are symmetric with respect to the center line. As
expected, this does not occur for the case in which the material is triclinic in the crack coordinates. Moreover,
for the cubic material, bK I reaches the highest values near the specimen surface.

In Fig. 8b, bK II and bK III are plotted for the triclinic material. For the other three materials, these values are
essentially zero along the entire crack front. It may be observed that bK II and bK III are not symmetric with
respect to the center line of the plate. In addition, bK II rises to about 8.4% of the two-dimensional KI value,
whereas bK III rises to about 2.3% of this value. It may be noted that these increases occur over distances of
10% to more than 20% of the plate thickness.

For pure in-plane shear shown in Fig. 6c, normalized stress intensity factors are presented in Fig. 9. The
normalizing factor is that for the two-dimensional solution for the same infinite body, namely, KII ¼ s

ffiffiffiffiffiffi
pa
p

.
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a b

Fig. 8. (a) Values of bK I as a function of plate thickness for the tensile load. (b) Values of bK II and bK III for the triclinic material.
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Interestingly, the values for bK II in the center of the plate approach unity for the isotropic and triclinic mate-
rials (see Fig. 9a). Symmetry about the center of the plate is achieved for the isotropic, as well as the cubic and
transversely isotropic (hy = p/4) materials. The results for the triclinic material are not symmetric. The surface
effects may be noted. In addition, as seen in Fig. 9b, the values of bK III are anti-symmetric with respect to the
plate centerline for all but the triclinic material. In that case, the values are nearly anti-symmetric. A clear sur-
face effect is observed. Finally, the behavior of bK I is not shown. For all but the triclinic material, its value is
essentially zero. For the triclinic material, bK I rises to above 4% of the plane strain KII value near one surface
and oscillates between 1% and �0.5% at the other surface.

3.3. Brazilian disk specimen

The Brazilian disk specimen illustrated in Fig. 10 is studied in this section. The specimen is analyzed for
several crack lengths with 0.2 6 a/R 6 0.8 where 2a is crack length and R is the radius of the disk. Three mate-
rials are considered: isotropic and two anisotropic cases. For the isotropic material, Young’s modulus
E = 1 · 106 psi and Poisson’s ratio m = 0.4. Of course, for isotropic material and traction boundary conditions,
the stress intensity factors do not depend upon mechanical properties. For the two anisotropic cases, the cubic
material properties in Table 1 are rotated with respect to the crack axes. In the first, the local crack front axes
have the following orientation with respect to the material axes h110/111i where hx/yi are the directions
shown in Fig. 10. The matrix of direction cosines is given by
a

Plea
gine
D
P

tð1Þij ¼

1ffiffi
2
p � 1ffiffi

2
p 0

1ffiffi
3
p 1ffiffi

3
p 1ffiffi

3
p

� 1ffiffi
6
p � 1ffiffi

6
p 2ffiffi

6
p

2664
3775: ð37Þ
EUsing Eq. (45), it is possible to obtain the Euler angles as hz = 50.7685�, hx = �24.0948� and hy = 26.5650�. In
the second case, hx/yi = h1 12/111i so that
C
T

tð2Þij ¼

1ffiffi
6
p 1ffiffi

6
p � 2ffiffi

6
p

1ffiffi
3
p 1ffiffi

3
p 1ffiffi

3
p

1ffiffi
2
p � 1ffiffi

2
p 0

2664
3775: ð38Þ
R
EHere the Euler angles are hz = �35.2644�, hx = �45.0� and hy = �90.0�.

For isotropic material and the h1 10/111i material configuration, the loading angle is taken to be h = 8�.
For these two cases, symmetric results are obtained for positive and negative values of h. For the cubic mate-
rial rotated to the crack axes, the material appears monoclinic with x = 0 a symmetry plane. For the h112/
U
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R

b

Fig. 9. (a) Values of bK II and (b) bK III as a function of plate thickness for the in-plane shear load.

se cite this article as: Leslie Banks-Sills et al., Methods for calculating stress intensity factors in anisotropic ..., En-
ering Fracture Mechanics (2006), doi:10.1016/j.engfracmech.2006.07.005



O
F

299
300
301
302
303
304
305
306
307
308
309

311311

312

314314

315
316
317
318
319
320

Fig. 10. The geometry of the Brazilian disk specimen.
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O111i material configuration, both h = 8� and �8� are considered. This material appears to be a monoclinic
material with z = 0 a plane of symmetry.

A typical mesh used in the analyses is shown in Fig. 11. The meshes contained between 4128 and 5588
isoparametric elements and 15,024–20,558 nodal points, respectively, depending upon crack length. Although
three-dimensional behavior was observed at the specimen surfaces for the thick plate, the mesh here contains
two elements in the thickness direction with periodic conditions applied to its front and back surfaces to
enforce plane strain conditions. The mesh contains predominantly fifteen noded wedge elements, with
quarter-point wedge elements at the crack fronts. There is a ring of twenty noded brick elements connected
to the quarter-point wedge elements.

The stress intensity factors KI, KII and KIII are obtained by means of the M-integral using qð2Þ1 in Fig. 4b.
This yields a value at the center line of the mesh. The stress intensity factors are normalized so that
Plea
gine
EbK m ¼
Km

r
ffiffiffiffiffiffi
pa
p ; ð39Þ
Twhere m = I, II, III,
Cr ¼ P
pRB

ð40Þ
R
Eand B is specimen thickness.

For the loading angle h = 8�, results for all material cases are plotted in Fig. 12a. This plot includes the
three modes for isotropic material and the two cubic cases. It may be observed that the bK I and bK II values
for the three materials are rather similar. The isotropic material leads to the highest values of bK I. For the cubic
material with directions h110/111i, the highest absolute values of bK II are obtained. The absolute value of bK II

increases monotonically as crack length increases. The mode I stress intensity factor reaches a maximum and
U
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R

Fig. 11. (a) The mesh used for analyzing the Brazilian disk specimen. (b) Detail surrounding the crack.
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Fig. 12. Values of the normalized stress intensity factors bK as a function of normalized crack length a/R for a Brazilian disk specimen
(a) made of isotropic and cubic material when h = 8� and (b) made of cubic material with h112/111i and h = �8�.
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Rthen decreases; at a/R = 0.8 its value is less than or equal to its value at a/R = 0.2 for each material type. Of

course, one must consider a mixed-mode failure criterion to predict failure. Values of bK III are zero for the
isotropic material and the cubic material with directions h1 12/111i. For those two cases, there is material
symmetry with respect to the plane z = 0. Of course, this occurs at the center of the specimen. It is expected
for the finite thickness specimen, that values of bK III will not be zero away from the centerline. As may
be observed in Fig. 12a, the value of bK III is positive for the right crack tip (see Fig. 10) for most values of
a/R; for the left crack tip, the opposite sign is obtained. Finally, in Fig. 12b the behavior of the normalized
stress intensity factors is completely different for h112/1 11i and h = �8�. Both bK I and bK II increase with
increasing crack length.

4. Summary and conclusions

In this study, a three-dimensional, conservative M-integral is presented for a generally anisotropic body
containing a crack. With the M-integral, the stress intensity factors may be obtained separately. To this
end, the first term of the asymptotic expansion of the displacement fields determined in [2] for a crack in a
general anisotropic material are employed as an auxiliary solution. Finite element analysis are conducted
to determine the displacement field of the actual cracked body.

Excellent results were obtained for several benchmark problems by employing the asymptotic displacement
field in a finite element formulation. The ‘intrinsic’ error of the M-integral was seen to be small. Two problems
were considered: a thick plate and a Brazilian disk specimen. For the thick plate, results obtained within the
specimen were close to that of a two-dimensional solution for both tension and in-plane shear. Edge effects
were particularly noticeable for anisotropic material. New results were presented for Brazilian disk specimens
of cubic material rotated with respect to the specimen axes. For this case, the surfaces of the specimen were
constrained to enforce plane strain conditions. In another study, three-dimensional effects will be examined.

The M-integral is an effective and accurate method for calculating stress intensity factors in mixed-mode
situations. It has been extended here to generally anisotropic materials.

Appendix. Relation between crack front, global and material coordinates

The case of orthotropic material properties in the material coordinates xi is considered. Here, there are nine
independent material properties, Young’s moduli, E1, E2, E3, Poisson’s ratios, m12, m23, m13, and shear moduli,
G12, G23, G31. The relation between the Young’s moduli and Poisson’s ratios is given by
Plea
gine
mij

Ei
¼ mji

Ej
; ð41Þ
where there is no summation, and i, j = 1,2,3.
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The compliance matrix in the material coordinate system is
Plea
gine
bS ¼
1=E1 �m12=E1 �m13=E1 0 0 0

1=E2 �m23=E3 0 0 0

1=E3 0 0 0

1=G23 0 0

0 1=G13 0

sym 0 0 1=G12

2666666664

3777777775
: ð42Þ
FThe matrix in Eq. (42) may be inverted to yield the stiffness matrix as
bC ¼ bS�1: ð43Þ
O
O

The stiffness and compliance matrices must be rotated to the global finite element coordinate system, as well as
the crack tip coordinate system. To this end, the 3 · 3 matrix of direction cosines t is defined between the two
coordinate systems. There are several ways to carry out this transformation. The finite element community
typically uses for the two-dimensional transformation, for example,
P
R

bij ¼
cos h � sin h 0

sin h cos h 0

0 0 1

264
375: ð44Þ
T
E
DIt may be noted that the elasticity community uses the transform of this matrix (see for example, [12] pp. 28–31

or [13] p. 40, eq. (2.5–6)).
For three dimensions, the direction cosines in terms of Euler angles are obtained. Three rotations are

defined. The first is hz which is taken with respect to the original material axis x3. After that rotation is carried
out, a rotation about the new x1 axis is defined as hx. Finally, a rotation is taken about the new x2-axis and
defined as hy. The reader should not be confused by the subscripts of these angles. They are not taken with
respect to the crack axes. With these angles, the direction cosines are found as
O
R

R
E
Ct11 ¼ cos hz cos hy � sin hz sin hx sin hy ;

t12 ¼ � sin hz cos hx;

t13 ¼ cos hz sin hy þ sin hz sin hx cos hy ;

t21 ¼ sin hz cos hy þ cos hz sin hx sin hy ;

t22 ¼ cos hz cos hx;

t23 ¼ sin hz sin hy � cos hz sin hx cos hy ;

t31 ¼ � cos hx sin hy ;

t32 ¼ sin hx;

t33 ¼ cos hx cos hy :

ð45Þ
CIf the transformation is carried out as done by the elasticity community, some of the signs in tij change and the
Euler angles are the negative of those defined above. But the same matrix of direction cosines is found.

Following Ting [13], pp. 54–55, the components of the 3 · 3 matrix of direction cosines may be used to for-
mulate two 6 · 6 matrices for rotating the material stiffness and compliance matrices. These matrices are given as
U
N

Rs ¼

t2
11 t2

12 t2
13 t12t13 t13t11 t11t12

t2
21 t2

22 t2
23 t22t23 t23t21 t21t22

t2
31 t2

32 t2
33 t32t33 t33t31 t31t32

2t21t31 2t22t32 2t23t33 t22t33 þ t23t32 t23t31 þ t21t33 t21t32 þ t22t31

2t31t11 2t32t12 2t33t13 t32t13 þ t33t12 t33t11 þ t31t13 t31t12 þ t32t11

2t11t21 2t12t22 2t13t23 t12t23 þ t13t22 t13t21 þ t11t23 t11t22 þ t12t21

26666666664

37777777775
ð46Þ
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and
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gine
Rc ¼

t2
11 t2

12 t2
13 2t12t13 2t13t11 2t11t12

t2
21 t2

22 t2
23 2t22t23 2t23t21 2t21t22

t2
31 t2

32 t2
33 2t32t33 2t33t31 2t31t32

t21t31 t22t32 t23t33 t22t33 þ t23t32 t23t31 þ t21t33 t21t32 þ t22t31

t31t11 t32t12 t33t13 t32t13 þ t33t12 t33t11 þ t31t13 t31t12 þ t32t11

t11t21 t12t22 t13t23 t12t23 þ t13t22 t13t21 þ t11t23 t11t22 þ t12t21

2666666664

3777777775
: ð47Þ
FWith respect to the global coordinate system, the rotated material matrices are
OC� ¼ Rc
bCRT

c ; ð48Þ
S� ¼ Rs

bSRT
s : ð49Þ
R
OAfter the finite element results are obtained, the M-integral is implemented in the local, crack tip coordinate

system (x,y,z). Once again the compliance and stiffness matrices are rotated. This time from the global finite
element coordinate system to the crack tip coordinates. The matrix of direction cosines is denoted as t 0. The
transformation of the material matrices is given by
 PC ¼ R0cC

�R0Tc ; ð50Þ
S ¼ R0sS

�R0Ts : ð51Þ
N
C

O
R

R
E
C

T
E
DThe components of R0c and R0s are the same as that of Rc and Rs, with the components of t replaced by those of

t 0 where the latter 3 · 3 matrix contains the directions cosines between the local crack tip coordinate system
and the global finite element coordinates.
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